|
突触囊泡膜蛋白2B在胶质瘤研究中的进展
|
Abstract:
在中枢神经系统肿瘤中,发病率最高的是胶质瘤。目前对于胶质瘤的治疗有着较为规范的流程,但由于该肿瘤向周围浸润的特点,胶质瘤患者复发率较高且5年生存率仍然不够理想。突触囊泡膜蛋白2B (SV2B)作为一种跨膜糖蛋白在细胞内分泌、递质释放等功能中展现了重要作用。除此之外,最近越来越多的证据表明SV2B作为一种抑制性因素在乳腺癌与胶质瘤的发展过程中展现了重要的调节作用。综上所述,我们总结了突触囊泡膜蛋白2B在胶质瘤中的功能作用、分子机制和临床前景,并提出该蛋白在未来可能成为胶质瘤患者治疗和预后的有用目标。
Among central nervous system tumors, the highest incidence is glioma. At present, there is a rela-tively standardized process for the treatment of glioma. However, due to the characteristics of tu-mor infiltration, the recurrence rate of glioma patients is high and the 5-year survival rate is still not ideal. As a transmembrane glycoprotein, synaptic vesicle membrane protein 2B (SV2B) plays an important role in cell endocrine and transmitter release. In addition, more and more evidence has recently shown that SV2B as an inhibitory factor plays an important role in the development of breast cancer and glioma. In summary, we summarize the functional role, molecular mechanisms, and clinical perspectives of synaptic vesicle membrane protein 2B in glioma and propose that this protein may be a useful therapeutic and prognostic target for glioma patients in the future.
[1] | Zhang, X., Sun, Y., Wang, P., Yang, C. and Li, S. (2017) Exploration of the Molecular Mechanism of Prostate Cancer Based on mRNA and miRNA Expression Profiles. Onco-Targets and Therapy, 10, 3225-3232.
https://doi.org/10.2147/OTT.S135764 |
[2] | Weller, M., Wick, W., Aldape, K., et al. (2015) Glioma. Nature Reviews. Disease Primers, 1, 15017.
https://doi.org/10.1038/nrdp.2015.17 |
[3] | Jiang, T., Nam, D.H., Ram, Z., et al. (2021) Clinical Practice Guidelines for the Management of Adult Diffuse Gliomas. Cancer Letters, 499, 60-72. https://doi.org/10.1016/j.canlet.2020.10.050 |
[4] | Stout, K.A., Dunn, A.R., Hoffman, C. and Miller, G.W. (2019) The Synaptic Vesicle Glycoprotein 2: Structure, Function, and Disease Relevance. ACS Chemical Neuroscience, 10, 3927-3938.
https://doi.org/10.1021/acschemneuro.9b00351 |
[5] | Scranton, T.W., Iwata, M. and Carlson, S.S. (1993) The SV2 Protein of Synaptic Vesicles Is a Keratan Sulfate Proteoglycan. Journal of Neurochemistry, 61, 29-44. https://doi.org/10.1111/j.1471-4159.1993.tb03535.x |
[6] | Yao, J. and Bajjalieh, S.M. (2008) Synaptic Vesicle Pro-tein 2 Binds Adenine Nucleotides. The Journal of Biological Chemistry, 283, 20628-20634. https://doi.org/10.1074/jbc.M800738200 |
[7] | Miyamoto, M., Kuzuya, A., Noda, Y., et al. (2020) Synaptic Vesicle Protein 2B Negatively Regulates the Amyloidogenic Processing of AβPP as a Novel Interaction Partner of BACE1. Journal of Alzheimer’s Disease: JAD, 75, 173-185.
https://doi.org/10.3233/JAD-200071 |
[8] | Morgans, C.W., Kensel-Hammes, P., Hurley, J.B., et al. (2009) Loss of the Synaptic Vesicle Protein SV2B Results in Reduced Neurotransmission and Altered Synaptic Vesicle Protein Expres-sion in the Retina. PLOS ONE, 4, e5230.
https://doi.org/10.1371/journal.pone.0005230 |
[9] | Fukusumi, Y., Wakamatsu, A., Takashima, N., Hasegawa, E., Miyauchi, N., Tomita, M. and Kawachi, H. (2015) SV2B Is Essential for the Integrity of the Glomerular Filtration Barrier. Laboratory Investigation; a Journal of Technical Methods and Pathology, 95, 534-545. https://doi.org/10.1038/labinvest.2015.39 |
[10] | Hao, N., Yang, D., Liu, T., Liu, S., Lu, X. and Chen, L. (2022) Laminin-Integrin a6b4 Interaction Activates Notch Signaling to Facilitate Bladder Cancer Development. BMC Cancer, 22, 558.
https://doi.org/10.1186/s12885-022-09645-7 |
[11] | Liotta, L.A. (1986) Tumor Invasion and Metastases—Role of the Extracellular Matrix: Rhoads Memorial Award Lecture. Cancer Research, 46, 1-7. |
[12] | Clegg, N., Ferguson, C., True, L.D., Arnold, H., Moorman, A., Quinn, J.E., Vessella, R.L. and Nelson, P.S. (2003) Molecular Characterization of Prostatic Small-Cell Neuroendocrine Carci-noma. The Prostate, 55, 55-64.
https://doi.org/10.1002/pros.10217 |
[13] | Aumailley, M., Bruck-ner-Tuderman, L., Carter, W.G., et al. (2005) A Simplified Laminin Nomenclature. Matrix Biology: Journal of the Inter-national Society for Matrix Biology, 24, 326-332.
https://doi.org/10.1016/j.matbio.2005.05.006 |
[14] | Iezzi, M., Theander, S., Janz, R., Loze, C. and Wollheim, C.B. (2005) SV2A and SV2C Are Not Vesicular Ca2+ Transporters but Control Glucose-Evoked Granule Recruitment. Journal of Cell Science, 118, 5647-5660.
https://doi.org/10.1242/jcs.02658 |
[15] | Iwamuro, M., Shiraha, H., Oyama, A., Uchida, D., Horiguchi, S. and Okada, H. (2021) Laminin-411 and -511 Modulate the Proliferation, Adhesion, and Morphology of Gastric Cancer Cells. Cell Biochemistry and Biophysics, 79, 407-418. https://doi.org/10.1007/s12013-021-00972-3 |
[16] | Kunitomi, H., Kobayashi, Y., Wu, R.C., Takeda, T., Tominaga, E., Banno, K. and Aoki, D. (2020) LAMC1 Is a Prognostic Factor and a Potential Therapeutic Target in Endometrial Cancer. Journal of Gynecologic Oncology, 31, e11.
https://doi.org/10.3802/jgo.2020.31.e11 |
[17] | Vijayan, P., Hack, S., Yao, T., Qureshi, M.A., Paterson, A.D., John, R., Davenport, B., Lennon, R., Pei, Y. and Barua, M. (2021) LAMA2 and LOXL4 Are Candidate FSGS Genes. BMC Nephrology, 22, 320.
https://doi.org/10.1186/s12882-021-02524-6 |
[18] | Liang, J., Li, H., Han, J., Jiang, J., Wang, J., Li, Y., Feng, Z., Zhao, R., Sun, Z., Lv, B. and Tian, H. (2020) Mex3a Interacts with LAMA2 to Promote Lung Adenocarcinoma Metasta-sis via PI3K/AKT Pathway. Cell Death & Disease, 11, 614. https://doi.org/10.1038/s41419-020-02858-3 |
[19] | Grenda, T., Grenda, A., Krawczyk, P. and Kwiatek, K. (2022) Botulinum Toxin in Cancer Therapy-Current Perspectives and Limitations. Applied Microbiology and Biotechnology, 106, 485-495.
https://doi.org/10.1007/s00253-021-11741-w |
[20] | Bandala, C., Miliar-García, A., Mejía-Barradas, C.M., Anaya-Ruiz, M., Luna-Arias, J.P., Bazán-Méndez, C.I., Gómez-López, M., Juárez-Méndez, S. and Lara-Padilla, E. (2012) Synaptic Vesicle Protein 2 (SV2) Isoforms. Asian Pacific Journal of Cancer Prevention: APJCP, 13, 5063-5067. https://doi.org/10.7314/APJCP.2012.13.10.5063 |
[21] | Bandala, C., Cortés-Algara, A.L., Mejía-Barradas, C.M., Ilizaliturri-Flores, I., Dominguez-Rubio, R., Bazán-Méndez, C.I., Floriano-Sánchez, E., Luna-Arias, J.P., Anaya-Ruiz, M. and Lara-Padilla, E. (2015) Botulinum Neurotoxin Type A Inhibits Synaptic Vesicle 2 Expression in Breast Cancer Cell Lines. International Journal of Clinical and Experimental Pathology, 8, 8411-8418. |
[22] | Chiu, Y.C., Wang, L.J., Lu, T.P., Hsiao, T.H., Chuang, E.Y. and Chen, Y. (2017) Differential Correlation Analysis of Glioblastoma Reveals Immune ceRNA Interactions Predictive of Patient Survival. BMC Bioinformatics, 18, 132.
https://doi.org/10.1186/s12859-017-1557-4 |
[23] | Karsenty, G., Rocha, J., Chevalier, S., Scarlata, E., Andrieu, C., Zouanat, F.Z., Rocchi, P., Giusiano, S., Elzayat, E.A. and Corcos, J. (2009) Botulinum Toxin Type A Inhibits the Growth of LNCaP Human Prostate Cancer Cells in Vitro and in Vivo. The Prostate, 69, 1143-1150. https://doi.org/10.1002/pros.20958 |
[24] | Wang, H., Liu, D. and Yang, J. (2019) Prognostic Risk Model Construction and Molecular Marker Identification in Glioblastoma Multiforme Based on mRNA/microRNA/Long Non-Coding RNA Analysis Using Random Survival Forest Method. Neoplasma, 66, 459-469. https://doi.org/10.4149/neo_2018_181008N746 |