All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

关于牛顿著作《广义算术》形成及其内容与影响的研究
Research on Formation of Newton’s Work Universal Arithmetic and Its Content and Influence

DOI: 10.12677/ISL.2023.71003, PP. 10-16

Keywords: 牛顿,广义算术,方程,代数
Newton
, Universal Arithmetic, Equation, Algebra

Full-Text   Cite this paper   Add to My Lib

Abstract:

牛顿于1707年出版的代数学著作《广义算术》在随后的三个多世纪里,影响了一大批欧洲的数学家和科学家学习数学。近年来,随着对牛顿数学和科学研究的不断开展,越多越多的人对牛顿的这本代数学著作进行讨论。本文运用文献分析法,结合牛顿的原著和当时的数学工作,对以往此类相关研究进行归纳和梳理,发现已有的研究主要集中在出版、内容来源、具体内容分析、其中的数学思想方法及其影响这五个方面;但这五个方面多数都研究得不是很全面,也不深入;现在研究比较深入的仅是其中牛顿给出的圆锥曲线构造理论和确定方程虚根和范围的方法两个具体方面,这是当前研究的热点之一。建议后续的研究更多关注此著作中内容的来源和其中反映出来的牛顿的数学思想方法。
Newton’s algebraic work Universal Arithmetic published in 1707 influenced a large number of Eu-ropean mathematicians and scientists to learn mathematics in the following three centuries. Re-cently, with the continuous development of research on Newton’s mathematics and science, more and more scholars have discussed this book. This paper combined Newton’s original works and the mathematical work at that time and sorted out the previous relevant research by means of litera-ture analysis, and found that the existing research mainly focuses on five aspects, that is the publication, content sources, specific content analysis, mathematical thoughts and methods and their influence. However, most of these five aspects are not comprehensive or in-depth except for two specific aspects which are the conic construction theory, which is one of the current research hotspots, given by Newton and the method of determining the imaginary root and range of the equation. It is suggested that the follow-up research should pay more attention to the source of the content in this book and Newton’s mathematical thinking method reflected in it.

References

[1]  Pycior, H.M. (1997) Symbols, Impossible Numbers, and Geometric Entanglements: British Algebra through the Commentaries on Newton’s Universal Arithmetick. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511895470
[2]  Westfall, R.S. and Devons, S. (1981) Never at Rest: A Biography of Isaac Newton. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9781107340664
[3]  Whiteside, D.T. (2008) The Mathematical Papers of Isaac Newton. Cambridge University Press, Cambridge.
[4]  Boyer, C.B. (1967) Essay Review: The Making of a Mathematician: The Mathematical Papers of Isaac Newton. History of Science, 6, 97-106.
https://doi.org/10.1177/007327536700600107
[5]  Rickey, V.F. (1987) Isaac Newton: Man, Myth, and Mathe-matics. The College Mathematics Journal, 18, 362-389.
https://doi.org/10.1080/07468342.1987.11973060
[6]  Whitrow, G.J. (1989) Newton’s Role in the History of Mathematics. Notes and Records of the Royal Society of London, 43, 71-92.
https://doi.org/10.1098/rsnr.1989.0006
[7]  Guicciardini, N. (2009) Isaac Newton on Mathematical Certainty and Method (No. 4). MIT Press, Cambridge.
https://doi.org/10.7551/mitpress/9780262013178.001.0001
[8]  Scriba, C.J. (1964) Mercator’s Kinckhuysen-Translation in the Bodleian Library at Oxford. The British Journal for the History of Science, 2, 45-58.
https://doi.org/10.1017/S0007087400001837
[9]  Bloye, N. and Huggett, S. (2011) Newton, the Geometer. Newsletter of the European Mathematical Society, 82, 19-27.
[10]  Shkolenok, G.A. (1972) Geometrical Constructions Equivalent to Non-Linear Algebraic Transformations of the Plane in Newton’s Early Papers. Archive for History of Exact Sciences, 9, 22-44.
https://doi.org/10.1007/BF00348538
[11]  Guicciardini, N. (2004) Isaac Newton and the Publication of His Mathematical Manuscripts. Studies in History and Philosophy of Science Part A, 35, 455-470.
https://doi.org/10.1016/j.shpsa.2004.06.002
[12]  Whiteside, D.T. (1970) The Mathematical Principles Underlying Newton’s Principia Mathematica. Journal for the History of Astronomy, 1, 116-138.
https://doi.org/10.1177/002182867000100203
[13]  Sylvester, J.J. (1864) II. An Inquiry into Newton’s Rule for the Discovery of Imaginary Roots. Proceedings of the Royal Society of London, 13, 179-183.
https://doi.org/10.1098/rspl.1863.0044
[14]  Acosta, D.J. (2003) Newton’s Rule of Signs for Imaginary Roots. The American Mathematical Monthly, 110, 694-706.
https://doi.org/10.1080/00029890.2003.11920009
[15]  Campbell, G. (1728) II. A Method for Determining the Number of Impossible Roots in Adfected ?quations. Philosophical Transactions of the Royal Society of London, 35, 515-531.
https://doi.org/10.1098/rstl.1727.0049
[16]  Maclaurin, C. (1729) A Second Letter to Martin Folkes, Esq.; Concerning the Roots of Equations, with Demonstration of Other Rules of Algebra. Philosophical Transactions of the Royal Society of London Series A, 1729, 59-96.
https://doi.org/10.1098/rstl.1729.0011
[17]  Sylvester, J.J. (1865) On an Elementary Proof and Generalization of Sir Isaac Newton’s Hitherto Undemonstrated Rule for the Discovery of Imaginary Roots. Proceedings of the London Mathematical Society, s1-1, 11-22.
https://doi.org/10.1112/plms/s1-1.1.9-s
[18]  Garrison, J.W. (1987) Newton and the Relation of Mathematics to Natural Philosophy. Journal of the History of Ideas, 48, 609-627.
https://doi.org/10.2307/2709690
[19]  Leibniz, G.W. (1708) Leibniz’ Review of the Arithmetica. Acta Eruditorum, 1708, 519-526.
[20]  Gray, J. (2016) Histories of Modern Mathematics in English in the 1940s, 50s, and 60s. In: Remmert, V.R., et al., Eds., Historiography of Mathe-matics in the 19th and 20th Centuries, Springer International Publishing, Berlin, 161-183.
https://doi.org/10.1007/978-3-319-39649-1_9
[21]  Qu, A. (2003) The Third Approach to the History of Mathe-matics in China.
[22]  曲安京. 近现代数学史研究的一条路径——以拉格朗日与高斯的代数方程理论为例[J]. 科学技术哲学研究, 2018, 35(6): 67-85.
[23]  Dunham, W. (1991) Journey through Genius: Great Theorems of Mathematics. John Wiley & Sons, Hoboken, 165-171.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413