|
胰腺癌免疫治疗的研究进展
|
Abstract:
胰腺癌是一种恶性程度高、发病率高、死亡率高的肿瘤。免疫治疗是胰腺癌除手术和化疗外的另一种重要治疗方法,但由于胰腺癌免疫抑制微环境具有高度异质性,对免疫治疗提出了挑战。本文综述了目前胰腺癌免疫治疗的研究进展,提出胰腺癌免疫治疗发展的前景和主要方向。
Pancreatic cancer is a tumor with a high degree of malignancy, morbidity and mortality. Immuno-therapy is another important treatment for pancreatic cancer in addition to surgery and chemo-therapy, but the immunosuppressive microenvironment of pancreatic cancer is highly heteroge-neous and poses a challenge to immunotherapy. This article reviews the current research progress of immunotherapy for pancreatic cancer and proposes the prospects and main directions for the de-velopment of immunotherapy for pancreatic cancer.
[1] | Sebastiano, M.R., Pozzato, C., Saliakoura, M., et al. (2020) ACSL3-PAI-1 Signaling Axis Mediates Tumor-Stroma Cross-Talk Promoting Pancreatic Cancer Progression. Science Advances, 6, eabb9200.
https://doi.org/10.1126/sciadv.abb9200 |
[2] | Liu, L., Huang, X., Shi, F., et al. (2022) Combination Therapy for Pancreatic Cancer: Anti-PD-(L)1-Based Strategy. Journal of Experimental & Clinical Cancer Research, 41, Article No. 56. https://doi.org/10.1186/s13046-022-02273-w |
[3] | Conroy, T., Hammel, P., Hebbar, M., et al. (2018) FOLFIRINOX or Gemcitabine as Adjuvant Therapy for Pancreatic Cancer. New England Journal of Medicine, 379, 2395-2406. https://doi.org/10.1056/NEJMoa1809775 |
[4] | Bengtsson, A., Andersson, R. and Ansari, D. (2020) The Actual 5-Year Survivors of Pancreatic Ductal Adenocarcinoma Based on Real-World Data. Scientific Reports, 10, Article No. 16425. https://doi.org/10.1038/s41598-020-73525-y |
[5] | Timmer, F.E.F., Geboers, B., Nieuwenhuizen, S., et al. (2021) Pancreatic Cancer and Immunotherapy: A Clinical Overview. Cancers, 13, Article No. 4138. https://doi.org/10.3390/cancers13164138 |
[6] | Huber, M., Brehm, C.U., Gress, T.M., et al. (2020) The Immune Microenvironment in Pancreatic Cancer. International Journal of Molecular Sciences, 21, Article No. 7307. https://doi.org/10.3390/ijms21197307 |
[7] | Chen, J., Guo, X.-Z. and Qi, X.-S. (2017) Clinical Outcomes of Spe-cific Immunotherapy in Advanced Pancreatic Cancer: A Systematic Review and Meta-Analysis. Journal of Immunology Research, 2017, Article ID: 8282391.
https://doi.org/10.1155/2017/8282391 |
[8] | Principe, D.R., Korc, M., Kamath, S.D., Munshi, H.G. and Rana, A. (2021) Trials and Tribulations of Pancreatic Cancer Immunotherapy. Cancer Letters, 504, 1-14. https://doi.org/10.1016/j.canlet.2021.01.031 |
[9] | Bear, A.S., Vonderheide, R.H. and O’Hara, M .H. (2020) Chal-lenges and Opportunities for Pancreatic Cancer Immunotherapy. Cancer Cell, 38, 788-802. https://doi.org/10.1016/j.ccell.2020.08.004 |
[10] | Darvin, P., Toor, S.M., Sasidharan Nair, V. and Elkord, E. (2018) Immune Checkpoint Inhibitors: Recent Progress and Potential Biomarkers. Experimental & Molecular Medicine, 50, 1-11. https://doi.org/10.1038/s12276-018-0191-1 |
[11] | Khasraw, M., Reardon, D.A., Weller, M. and Sampson, J.H. (2020) PD-1 Inhibitors: Do They Have a Future in the Treatment of Glioblastoma? Clinical Cancer Research, 26, 5287-5296.
https://doi.org/10.1158/1078-0432.CCR-20-1135 |
[12] | Wei, S.C., Duffy, C.R. and Allison, J.P. (2018) Funda-mental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discovery, 8, 1069-1086. https://doi.org/10.1158/2159-8290.CD-18-0367 |
[13] | Ruiz-Ba?obre, J. and Goel, A. (2019) DNA Mismatch Repair Deficiency and Immune Checkpoint Inhibitors in Gastrointestinal Cancers. Gastroenterology, 156, 890-903. https://doi.org/10.1053/j.gastro.2018.11.071 |
[14] | Henriksen, A., Dyhl-Polk, A., Chen, I. and Nielsen, D. (2019) Checkpoint Inhibitors in Pancreatic Cancer. Cancer Treatment Reviews, 78, 17-30. https://doi.org/10.1016/j.ctrv.2019.06.005 |
[15] | Feng, M., Xiong, G., Cao, Z., et al. (2017) PD-1/PD-L1 and Im-munotherapy for Pancreatic Cancer. Cancer Letters, 407, 57-65. https://doi.org/10.1016/j.canlet.2017.08.006 |
[16] | Messenheimer, D.J., Jensen, S.M., Afentoulis, M.E., et al. (2017) Timing of PD-1 Blockade Is Critical to Effective Combination Immunotherapy with Anti-OX40. Clinical Cancer Research, 23, 6165-6177.
https://doi.org/10.1158/1078-0432.CCR-16-2677 |
[17] | Mace, T.A., Shakya, R., Pitarresi, J.R., et al. (2018) IL-6 and PD-L1 Antibody Blockade Combination Therapy Reduces Tumour Progression in Murine Models of Pancreatic Cancer. Gut, 67, 320-332.
https://doi.org/10.1136/gutjnl-2016-311585 |
[18] | Gao, Y., Li, S., Xu, D., et al. (2017) Prognostic Value of Pro-grammed Death-1, Programmed Death-Ligand 1, Programmed Death-Ligand 2 Expression, and CD8(+) T Cell Density in Primary Tumors and Metastatic Lymph Nodes From Patients with Stage T1-4N + M0 Gastric Adenocarcinoma. Chinese Journal of Cancer, 36, Article No. 61.
https://doi.org/10.1186/s40880-017-0226-3 |
[19] | Daley, D., Mani, V., Mohan, N., et al. (2017) Dectin 1 Activation on Macrophages by Galectin 9 Promotes Pancreatic Carcinoma and Peritumoral Immune Tolerance. Nature Medicine, 23, 556-567. https://doi.org/10.1038/nm.4314 |
[20] | Lheureux, S., Butler, M.O., Clarke, B., et al. (2018) Association of Ipilimumab with Safety and Antitumor Activity in Women with Metastatic or Recurrent Human Papillomavirus-Related Cervical Carcinoma. JAMA Oncology, 4, e173776.
https://doi.org/10.1001/jamaoncol.2017.3776 |
[21] | Huang, Y., Fan, H., Li, N. and Du, J. (2019) Risk of Im-mune-Related Pneumonitis for PD1/PD-L1 Inhibitors: Systematic Review and Network Meta-Analysis. Cancer Medicine, 8, 2664-2674. https://doi.org/10.1002/cam4.2104 |
[22] | Christenson, E.S., Jaffee, E. and Azad, N.S. (2020) Current and Emerging Therapies for Patients with Advanced Pancreatic Ductal Adenocarcinoma: A Bright Future. The Lancet Oncology, 21, e135-e145.
https://doi.org/10.1016/S1470-2045(19)30795-8 |
[23] | Hingorani, S.R., Zheng, L., Bullock, A.J., et al. (2018) HALO 202: Randomized Phase II Study of PEGPH20 Plus Nab-Paclitaxel/Gemcitabine versus Nab-Paclitaxel/Gemcitabine in Patients with Untreated, Metastatic Pancreatic Ductal Adenocarcinoma. Journal of Clinical Oncology, 36, 359-366. https://doi.org/10.1200/JCO.2017.74.9564 |
[24] | Aglietta, M., Barone, C., Sawyer, M.B., et al. (2014) A Phase I Dose Escalation Trial of Tremelimumab (CP-675,206) in Combination with Gemcitabine in Chemotherapy-Naive Patients with Metastatic Pancreatic Cancer. Annals of Oncology, 25, 1750-1755. https://doi.org/10.1093/annonc/mdu205 |
[25] | Riley, R.S., June, C.H., Langer, R. and Mitchell, M.J. (2019) Delivery Technologies for Cancer Immunotherapy. Nature Reviews Drug Discovery, 18, 175-196. https://doi.org/10.1038/s41573-018-0006-z |
[26] | Kartikasari, A.E.R., Prakash, M.D., Cox, M., et al. (2018) Ther-apeutic Cancer Vaccines-T Cell Responses and Epigenetic Modulation. Frontiers in Immunology, 9, Article 3109. https://doi.org/10.3389/fimmu.2018.03109 |
[27] | Brar, G., Greten, T.F. and Brown, Z.J. (2018) Current Frontline Approaches in the Management of Hepatocellular Carcinoma: The Evolving Role of Immunotherapy. Therapeutic Ad-vances in Gastroenterology, 11.
https://doi.org/10.1177/1756284818808086 |
[28] | Soares, K.C., Rucki, A.A., Wu, A.A., et al. (1997) PD-1/PD-L1 Blockade Together with Vaccine Therapy Facilitates Effector T-Cell Infiltration into Pancreatic Tumors. Journal of Immunotherapy, 38, 1-11.
https://doi.org/10.1097/CJI.0000000000000062 |
[29] | Le, D.T., Lutz, E., Uram, J.N., et al. (1997) Evaluation of Ipilimumab in Combination with Allogeneic Pancreatic Tumor Cells Transfected with a GM-CSF Gene in Previously Treated Pancreatic Cancer. Journal of Immunotherapy, 36, 382-389. https://doi.org/10.1097/CJI.0b013e31829fb7a2 |
[30] | Coveler, A.L., Rossi, G.R., Vahanian, N.N., et al. (2016) Algenpantucel-L Immunotherapy in Pancreatic Adenocarcinoma. Immunotherapy, 8, 117-125. |
[31] | Koido, S., Okamoto, M., Kobayashi, M., Shimodaira, S. and Sugiyama, H. (2017) Significance of Wilms’ Tumor 1 Antigen as a Cancer Vaccine for Pancreatic Cancer. Discovery Medicine, 24, 41-49. |
[32] | Nishida, S., Koido, S., Takeda, Y., et al. (2014) Wilms Tumor Gene (WT1) Peptide-Based Cancer Vaccine Combined with Gemcitabine for Patients with Advanced Pancreatic Cancer. Journal of Immunotherapy, 37, 105-114.
https://doi.org/10.1097/CJI.0000000000000020 |
[33] | Rivadeneira, D.B. and Delgoffe, G.M. (2018) Antitumor T-Cell Reconditioning: Improving Metabolic Fitness for Optimal Cancer Immunotherapy. Clinical Cancer Research, 24, 2473-2481.
https://doi.org/10.1158/1078-0432.CCR-17-0894 |
[34] | Yamaue, H., Tsunoda, T., Tani, M., et al. (2015) Random-ized Phase II/III Clinical Trial of Elpamotide for Patients with Advanced Pancreatic Cancer: PEGASUS-PC Study. Cancer Science, 106, 883-890.
https://doi.org/10.1111/cas.12674 |
[35] | Samson, A., Bentham, M.J., Scott, K., et al. (2018) Oncolytic Reovirus as a Combined Antiviral and Anti-Tumour Agent for the Treatment of Liver Cancer. Gut, 67, 562-573. https://doi.org/10.1136/gutjnl-2016-312009 |
[36] | Lichty, B.D., Breitbach, C.J., Stojdl, D.F. and Bell, J.C. (2014) Going Viral with Cancer Immunotherapy. Nature Reviews Cancer, 14, 559-567. https://doi.org/10.1038/nrc3770 |
[37] | Noonan, A.M., Farren, M.R., Geyer, S.M., et al. (2016) Randomized Phase 2 Trial of the Oncolytic Virus Pelareorep (Reolysin) in Upfront Treatment of Metastatic Pancreatic Adenocarcinoma. Molecular Therapy, 24, 1150-1158.
https://doi.org/10.1038/mt.2016.66 |
[38] | Hirooka, Y., Kasuya, H., Ishikawa, T., et al. (2018) A Phase I Clinical Trial of EUS-Guided Intratumoral Injection of the Oncolytic Virus, HF10 for Unresectable Locally Advanced Pancreatic Cancer. BMC Cancer, 18, Article No. 596.
https://doi.org/10.1186/s12885-018-4453-z |
[39] | Habtetsion, T., Ding, Z.C., Pi, W., et al. (2018) Alteration of Tumor Metabolism by CD4+ T Cells Leads to TNF-α- Dependent Intensification of Oxidative Stress and Tumor Cell Death. Cell Metabolism, 28, 228-242.
https://doi.org/10.1016/j.cmet.2018.05.012 |
[40] | Kondo, H., Hazama, S., Kawaoka, T., et al. (2008) Adoptive Immunotherapy for Pancreatic Cancer Using MUC1 Peptide-Pulsed Dendritic Cells and Activated T Lymphocytes. Anticancer Research, 28, 379-387. |
[41] | Santos do Carmo, F., Ricci-Junior, E., Cerqueira-Coutinho, C., et al. (2016) Anti-MUC1 Nano-Aptamers for Triple- Negative Breast Cancer Imaging by Single-Photon Emission Computed To-mography in Inducted Animals: Initial Considerations. International Journal of Nanomedicine, 12, 53-60. https://doi.org/10.2147/IJN.S118482 |