全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

粗糙带圆柱尾迹流场中翼型噪声的数值研究
Airfoil in Rough Cylindrical Wake Flow Field Numerical Study of Noise

DOI: 10.12677/MOS.2023.122095, PP. 1005-1017

Keywords: 噪声,粗糙带圆柱,气动性能,FW-H方程;Noise, Roughness Strips Cylinder, Aerodynamic Performance, FW-H Equation

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过数值模拟方法研究了不同高度粗糙带圆柱下尾迹变化,以及粗糙带对圆柱和翼型的气动性能和噪声的影响。高粗糙带下的圆柱升阻力系数更大,低粗糙带则影响较小,粗糙带对翼型的升阻力系数影响较小,高粗糙带在一定区域会提高翼型的表面时间平均压力系数。并且高粗糙带会改变圆柱表面的边界层分离后的流动和低速回流区的范围,增强扰动影响后方翼型流场。FW-H方程积分不同表面得到远场位置声压级,在90?位置高粗糙带会增加圆柱和翼型噪声,在60?位置积分面只有翼型时,高粗糙带圆柱后方翼型的噪声反而更小。还比较了局部流场和全局流场的压力脉动均方根值,表明高粗糙带圆柱后方流场有更强的声源强度,最后分析了瞬时涡结构和湍流强度的变化,表明高粗糙带对后方尾迹具体扰动。
The change of wake under the cylinder with different height rough band and the influence of rough band on the aerodynamic performance and noise of the cylinder and airfoil are studied by numeri-cal simulation. The cylindrical drag coefficient under the high rough zone is greater, while the low rough zone has little influence on the drag coefficient of the airfoil. The high rough zone will increase the surface time average pressure coefficient of the airfoil in a certain area. In addition, the high roughness zone will change the flow range after boundary layer separation on the cylindrical sur-face and the low velocity reflux zone, and enhance the disturbance influence on the rear airfoil flow field. FW-H equation is integrated with different surfaces to obtain sound pressure levels at far-field positions. The noise of cylinder and airfoil is increased at 90? with high roughness band, but the noise of airfoil behind the cylinder with high roughness band is smaller at 60? with only airfoil as integral surface. The root mean square value of pressure pulsation of local and global flow fields is also compared, indicating that the flow field behind the cylinder with high rough zone has stronger sound source intensity. Finally, the changes of instantaneous vortex structure and turbulence in-tensity are analyzed, indicating that the high rough zone has specific disturbance to the rear wake.

References

[1]  Camussi, R. and Bennett, G.J. (2020) Aeroacoustics Research in Europe: The CEAS-ASC Report on 2019 Highlights. Journal of Sound and Vibration, 484, Article ID: 115540.
https://doi.org/10.1016/j.jsv.2020.115540
[2]  Gély, D. and Bennett, G.J. (2019) Aeroacoustics Research in Europe: The CEAS-ASC Report on 2018 Highlights. Journal of Sound and Vibration, 463, Article ID: 114950.
https://doi.org/10.1016/j.jsv.2019.114950
[3]  Sevik, M. (1974) Sound Radiation from a Sub-sonic Rotor Subjected to Turbulence. Symposium on Fluid Mechanics, Acoustics and Design of Turbomachinery, 493-512.
[4]  Wojno, J.P., Mueller, T.J. and Blake, W.K. (2002) Turbulence Ingestion Noise, Part 1: Experimental Characteri-zation of Grid-Generated Turbulence. AIAA Journal, 40, 16-25.
https://doi.org/10.2514/2.1636
[5]  Wojno, J.P., Mueller, T.J. and Blake, W.K. (2002) Turbulence Ingestion Noise, Part 2: Rotor Aeroacoustic Response to Grid-Generated Turbulence. AIAA Journal, 40, 26-32.
https://doi.org/10.2514/2.1637
[6]  Sharpf, D.F. and Mueller, T.J. (1995) An Experimental In-vestigation of the Sources of Propeller Noise Due to the Ingestion of Turbulence at Low Speeds. Experiments in Fluids, 18, 277-287.
https://doi.org/10.1007/BF00195098
[7]  Stephens, D.B. and Morris, S.C. (2009) Sound Generation by a Rotor Interacting with a Casing Turbulent Boundary Layer. AIAA Journal, 47, 2698-2708.
https://doi.org/10.2514/1.43271
[8]  Wang, M. and Moin, P. (2000) Computation of Trailing-Edge Flow and Noise Using Large-Eddy Simulation. AIAA Journal, 38, 2201-2209.
https://doi.org/10.2514/2.895
[9]  Eltaweel, A. and Wang, M. (2011) Numerical Simulation of Broadband Noise from Airfoil-Wake Interaction. 17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference), Portland, 5-8 June 2011, 2802.
https://doi.org/10.2514/6.2011-2802
[10]  付建, 王永生, 靳栓宝, 等. LES和DES在流体动力噪声预报中的适用性分析[J]. 华中科技大学学报: 自然科学版, 2015, 43(2): 66-70.
[11]  Assi, G., Bearman, P.W. and Kitney, N. (2009) Low Drag Solutions for Suppressing Vortex-Induced Vibration of Circular Cylinders. Journal of Fluids & Structures, 25, 666-675.
https://doi.org/10.1016/j.jfluidstructs.2008.11.002
[12]  Heaf, N.J. (1977) Dynamics of Marine Structures. Construction Industry Research and Information Association, Underwater Engineering Group.
[13]  Kumar, R.A., Sohn, C.H. and Gowda, B.H.L. (2008) Passive Control of Vortex-Induced Vibrations: An Overview. Recent Patents on Mechanical Engineering, 1, 1-11.
https://doi.org/10.2174/2212797610801010001
[14]  Assi, G., Bearman, P.W., Kitney, N., et al. (2010) Suppression of Wake-Induced Vibration of Tandem Cylinders with Free-to-Rotate Control Plates. Journal of Fluids and Structures, 26, 1045-1057.
https://doi.org/10.1016/j.jfluidstructs.2010.08.004
[15]  Bearman, P. and Brankovic, M. (2004) Experimental Studies of Passive Control of Vortex-Induced Vibration. European Journal of Mechanics, 23, 9-15.
https://doi.org/10.1016/j.euromechflu.2003.06.002
[16]  Shan, H. (2011) VIV Suppression of a Two-Degree-of-Freedom Circular Cylinder and Drag Reduction of a Fixed Circular Cylinder by the Use of Helical Grooves. Journal of Fluids & Struc-tures, 27, 1124-1133.
https://doi.org/10.1016/j.jfluidstructs.2011.07.005
[17]  Zdravkovich, M.M. (1981) Review and Classification of Various Aerodynamic and Hydrodynamic Means for Suppressing Vortex Shedding. Journal of Wind Engineering and Industrial Aero-dynamics, 7, 145-189.
https://doi.org/10.1016/0167-6105(81)90036-2
[18]  Bernitsas, M.M. and Raghavan, K. (2011) Enhancement of Vortex Induced Forces and Motion through Surface Roughness Control. US, US8684040 B2.
[19]  Chang, C., Kumar, R.A. and Ber-nitsas, M.M. (2011) VIV and Galloping of Single Circular Cylinder with Surface Roughness at 3.0 × 104 ≤ Re ≤ 1.2 × 105. Ocean Engineering, 38, 1713-1732.
https://doi.org/10.1016/j.oceaneng.2011.07.013
[20]  Nicoud, F. and Ducros, F. (1999) Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor. Flow Turbulence and Combustion, 62, 183-200.
https://doi.org/10.1023/A:1009995426001
[21]  Wang, L. and Liu, X. (2022) Aeroacoustic Investigation of Asymmetric Oblique Trailing-Edge Serrations Enlighted by Owl Wings. Physics of Fluids, 34, Article ID: 015113.
https://doi.org/10.1063/5.0076272
[22]  Jacob, M.C., Boudet, J., Casalino, D., et al. (2005) A Rod-Airfoil Experiment as a Benchmark for Broadband Noise Modeling. Theoretical and Computational Fluid Dynamics, 19, 171-196.
https://doi.org/10.1007/s00162-004-0108-6
[23]  Lyu, B. and Azarpeyvand, M. (2017) On the Noise Prediction for Ser-rated Leading Edges. Journal of Fluid Mechanics, 826, 205-234.
https://doi.org/10.1017/jfm.2017.429

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133