|
支气管肺发育不良早期相关生物标志物的研究进展
|
Abstract:
随着现代医学水平以及新生儿重症监护室的发展,早产儿的存活率得到极大的提升,但同时也伴随着部分早产儿慢性肺部疾病发病率的上升,如支气管肺发育不良(BPD),BPD是发生在新生儿特别是早产儿中的一种慢性损伤性肺疾病,受影响的婴儿通常需要长期和反复住院,甚至可能出现肺功能的终身改变,严重影响这部分患儿的生活质量。目前,临床上对于BPD暂无特异性的治疗手段,仍以预防为主,因此,早期识别、早期干预对这部分早产儿尤为重要。因此,这就需要我们找到精准的生物标志物去帮助我们识别这部分患儿,本文将就目前对BPD早期相关生物标志物进行综述。
With the development of modern medicine and neonatal intensive care unit, the survival rate of premature infants has been greatly improved, but it is also accompanied by an increase in the inci-dence of chronic lung diseases in some premature infants, such as bronchopulmonary dysplasia (BPD). BPD is a chronic traumatic lung disease that occurs in newborns, especially premature in-fants. Affected infants usually need to be hospitalized for a long time and repeatedly. There may even be lifelong changes in lung function, seriously affecting the quality of life of these children. At present, there is no specific treatment for BPD in clinic, and prevention is still the main treatment. Therefore, early identification and early intervention are particularly important for this part of premature infants. Therefore, it is necessary for us to find accurate biomarkers to help us identify these children. This article will review the early biomarkers of BPD.
[1] | Islam, J.Y., Keller, R.L., Aschner, J.L., Hartert, T.V. and Moore, P.E. (2015) Understanding the Short- and Long-Term Respiratory Outcomes of Prematurity and Bronchopulmonary Dysplasia. American Journal of Respiratory and Critical Care Medicine, 192, 134-156. https://doi.org/10.1164/rccm.201412-2142PP |
[2] | Stocks, J., Hislop, A. and Son-nappa, S. (2013) Early Lung Development: Lifelong Effect on Respiratory Health and Disease. The Lancet. Respiratory Medicine, 1, 728-742. https://doi.org/10.1016/S2213-2600(13)70118-8 |
[3] | Jensen, E.A., Dysart, K., Gantz, M.G., McDonald, S., Bamat, N.A., Keszler, M., Kirpalani, H., Laughon, M.M., Poindexter, B.B., Duncan, A.F., Yoder, B.A., Eichenwald, E.C. and DeMauro, S.B. (2019) The Diagnosis of Bronchopulmonary Dysplasia in Very Preterm Infants. An Evidence-Based Approach. American Journal of Respiratory and Critical Care Medicine, 200, 751-759. https://doi.org/10.1164/rccm.201812-2348OC |
[4] | McEvoy, C.T., Jain, L., Schmidt, B., Abman, S., Bancalari, E. and Aschner, J.L. (2014) Bronchopulmonary Dysplasia: NHLBI Workshop on the Primary Prevention of Chronic Lung Diseases. Annals of the American Thoracic Society, 11, S146-S153. https://doi.org/10.1513/AnnalsATS.201312-424LD |
[5] | 鲁元元, 方欣, 赵小林, 张莉, 李占魁. 新生儿支气管肺发育不良高危因素的研究进展[J]. 中国妇幼健康研究, 2020, 31(12): 1739-1743. |
[6] | Brener Dik, P.H., Ni?o Gualdron, Y.M., Galletti, M.F., Cribioli, C.M. and Mariani, G.L. (2017) Bronchopulmonary Dysplasia: Incidence and Risk Factors. Displasia Broncopulmonar: Incidencia y factores de riesgo. Archivos Argentinos de Pediatria, 115, 476-482. https://doi.org/10.5546/aap.2017.476 |
[7] | Kiciński, P., Kesiak, M., Nowiczewski, M. and Gulczyńska, E. (2017) Bronchopulmonary Dysplasia in Very and Extremely Low Birth Weight Infants—Analysis of Selected Risk Fac-tors. Polski Merkuriusz Lekarski: Organ Polskiego Towarzystwa Lekarskiego, 42, 71-75. |
[8] | Brostr?m, E.B., Katz-Salamon, M., Lundahl, J., Halldén, G. and Winbladh, B. (2007) Eosinophil Activation in Preterm Infants with Lung Disease. Acta Paediatrica (Oslo, Norway: 1992), 96, 23-28.
https://doi.org/10.1111/j.1651-2227.2006.00002.x |
[9] | Kandasamy, J., Roane, C., Szalai, A. and Ambalavanan, N. (2015) Serum Eotaxin-1 Is Increased in Extremely-Low-Birth-Weight Infants with Bronchopulmonary Dysplasia or Death. Pediatric Research, 78, 498-504.
https://doi.org/10.1038/pr.2015.152 |
[10] | 陈瑛, 彭晓艳, 韩同英, 等. 早产儿嗜酸性粒细胞增多症与支气管肺发育不良的相关性[J]. 中华新生儿科杂志, 2021, 36(1): 14-19. |
[11] | Lenz, A.M. (2011) Natriuretic Peptides in Chil-dren: Physiology and Clinical Utility. Current Opinion in Pediatrics, 23, 452-459. https://doi.org/10.1097/MOP.0b013e32834810e5 |
[12] | Harris, S.L., More, K., Dixon, B., Troughton, R., Pember-ton, C., Horwood, J., Ellis, N. and Austin, N. (2018) Factors Affecting N-Terminal Pro-B-Type Natriuretic Peptide Lev-els in Preterm Infants and Use in Determination of Haemodynamic Significance of Patent Ductus Arteriosus. European Journal of Pediatrics, 177, 521-532.
https://doi.org/10.1007/s00431-018-3089-y |
[13] | Méndez-Abad, P., Zafra-Rodríguez, P., Lubián-López, S. and Benavente-Fernández, I. (2019) NTproBNP Is a Useful Early Biomarker of Bronchopulmonary Dysplasia in Very Low Birth Weight Infants. European Journal of Pediatrics, 178, 755-761. https://doi.org/10.1007/s00431-019-03347-2 |
[14] | 吴峰, 丁伯应, 杨小龙. CC16与肺部疾病关系的研究进展[J]. 临床肺科杂志, 2014, 19(9): 1689-1691. |
[15] | Sarafidis, K., Stathopoulou, T., Diamanti, E., Soubasi, V., Agakidis, C., Balaska, A. and Drossou, V. (2008) Clara Cell Secretory Protein (CC16) as a Peripheral Blood Biomarker of Lung Inju-ry in Ventilated Preterm Neonates. European Journal of Pediatrics, 167, 1297-1303. https://doi.org/10.1007/s00431-008-0712-3 |
[16] | Wang, K., Huang, X., Lu, H. and Zhang, Z. (2014) A Comparison of KL-6 and Clara Cell Protein as Markers for Predicting Bronchopulmonary Dysplasia in Preterm Infants. Disease Markers, 2014, Article ID: 736536.
https://doi.org/10.1155/2014/736536 |
[17] | Dilli, D., ?zyazici, A., Dursun, A. and Beken, S. (2017) Predictive Val-ues of Plasma KL-6 in Bronchopulmonary Dysplasia in Preterm Infants. Turkish Journal of Medical Sciences, 47, 621-626. https://doi.org/10.3906/sag-1512-78 |
[18] | Ogihara, T., Hirano, K., Morinobu, T., Kim, H. S., Ogawa, S., Hiroi, M., Oue, S., Ban, R., Hira, S., Hasegawa, M., Yamaoka, S. and Yasui, M. (2006) Plasma KL-6 Predicts the De-velopment and Outcome of Bronchopulmonary Dysplasia. Pediatric Research, 60, 613-618. https://doi.org/10.1203/01.pdr.0000242361.47408.51 |
[19] | Inoue, H., Ohga, S., Kusuda, T., Kitajima, J., Kinjo, T., Ochiai, M., Takahata, Y., Honjo, S. and Hara, T. (2013) Serum Neutrophil Gelatinase-Associated Lipocalin as a Predic-tor of the Development of Bronchopulmonary Dysplasia in Preterm Infants. Early Human Development, 89, 425-429. https://doi.org/10.1016/j.earlhumdev.2012.12.011 |
[20] | Tsao, P.N., Wei, S.C., Su, Y.N., Lee, C.N., Chou, H.C., Hsieh, W.S. and Hsieh, F.J. (2004) Placenta Growth Factor Elevation in the Cord Blood of Premature Neonates Predicts Poor Pulmonary Outcome. Pediatrics, 113, 1348-1351.
https://doi.org/10.1542/peds.113.5.1348 |
[21] | Abdollahi, A., Hahnfeldt, P., Maercker, C., Gr?ne, H.J., Debus, J., Ansorge, W., Folkman, J., Hlatky, L. and Huber, P.E. (2004) Endostatin’s Antiangiogenic Signaling Network. Molecu-lar Cell, 13, 649-663.
https://doi.org/10.1016/S1097-2765(04)00102-9 |
[22] | Janér, J., Andersson, S., Kajantie, E. and Lassus, P. (2009) Endostatin Concentration in Cord Plasma Predicts the Development of Bronchopulmonary Dysplasia in Very Low Birth Weight Infants. Pediatrics, 123, 1142-1146.
https://doi.org/10.1542/peds.2008-1339 |
[23] | Czernik, C., Metze, B., Müller, C., Müller, B. and Bührer, C. (2011) Urinary N-Terminal B-Type Natriuretic Peptide Predicts Severe Retinopathy of Prematurity. Pediatrics, 128, e545-e549. https://doi.org/10.1542/peds.2011-0603 |
[24] | Shima, Y., Nishimaki, S., Nakajima, M., Kumasaka, S. and Migita, M. (2011) Urinary β-2-Microglobulin as an Alternative Marker for Fetal Inflammatory Response and Development of Bronchopulmonary Dysplasia in Premature Infants. Journal of Perinatology: Official Journal of the California Perinatal Association, 31, 330-334.
https://doi.org/10.1038/jp.2010.129 |
[25] | van Mastrigt, E., Zweekhorst, S., Bol, B., Tibboel, J., van Rosmalen, J., Samsom, J.N., Kroon, A.A., de Jongste, J.C., Reiss, I.K.M., Post, M. and Pijnenburg, M.W. (2018) Ceramides in Tra-cheal Aspirates of Preterm Infants: Marker for Bronchopulmonary Dysplasia. PLOS ONE, 13, e0185969. https://doi.org/10.1371/journal.pone.0185969 |
[26] | Hannun, Y.A. and Obeid, L.M. (2002) The Ceramide-Centric Universe of Lipid-Mediated Cell Regulation: Stress Encounters of the Lipid Kind. The Journal of Biological Chemistry, 277, 25847-25850.
https://doi.org/10.1074/jbc.R200008200 |
[27] | Payne, S.G., Milstien, S. and Spiegel, S. (2002) Sphingo-sine-1-phosphate: Dual Messenger Functions. FEBS Letters, 531, 54-57. https://doi.org/10.1016/S0014-5793(02)03480-4 |
[28] | Tibboel, J., Joza, S., Reiss, I., de Jongste, J.C. and Post, M. (2013) Amelioration of Hyperoxia-Induced Lung Injury Using a Sphingolipid-Based Intervention. The European Res-piratory Journal, 42, 776-784.
https://doi.org/10.1183/09031936.00092212 |
[29] | Mathias, S., Pe?a, L.A. and Kolesnick, R.N. (1998) Signal Transduction of Stress via Ceramide. The Biochemical Journal, 335, 465-480. https://doi.org/10.1042/bj3350465 |
[30] | Hasan, J., Beharry, K.D., Valencia, A.M., Strauss, A. and Modanlou, H.D. (2009) Soluble Vascular Endothelial Growth Factor Receptor 1 in Tracheal Aspirate Fluid of Preterm Neonates at Birth May Be Predictive of Bronchopulmonary Dysplasia/Chronic Lung Disease. Pediatrics, 123, 1541-1547. https://doi.org/10.1542/peds.2008-1670 |
[31] | Been, J.V., Debeer, A., van Iwaarden, J.F., Kloosterboer, N., Passos, V.L., Naulaers, G. and Zimmermann, L.J. (2010) Early Alterations of Growth Factor Patterns in Bronchoalveolar Lavage Fluid from Preterm Infants Developing Bronchopulmonary Dysplasia. Pediatric Research, 67, 83-89. https://doi.org/10.1203/PDR.0b013e3181c13276 |
[32] | May, C., Patel, S., Peacock, J., Milner, A., Rafferty, G.F. and Greenough, A. (2007) End-Tidal Carbon Monoxide Levels in Prematurely Born Infants Developing Bronchopulmo-nary Dysplasia. Pediatric Research, 61, 474-478.
https://doi.org/10.1203/pdr.0b013e3180332bfe |
[33] | Zhang, Z.Q., Huang, X.M. and Lu, H. (2014) Early Bi-omarkers as Predictors for Bronchopulmonary Dysplasia in Preterm Infants: A Systematic Review. European Journal of Pediatrics, 173, 15-23.
https://doi.org/10.1007/s00431-013-2148-7 |
[34] | May, C., Patel, S., Kennedy, C., Pollina, E., Rafferty, G.F., Pea-cock, J.L. and Greenough, A. (2011) Prediction of Bronchopulmonary Dysplasia. Archives of Disease in Childhood. Fe-tal and Neonatal Edition, 96, F410-F416.
https://doi.org/10.1136/adc.2010.189597 |
[35] | Lal, C.V., Bhandari, V. and Ambalavanan, N. (2018) Genomics, Microbiomics, Proteomics, and Metabolomics in Bronchopulmonary Dysplasia. Seminars in Perinatology, 42, 425-431. https://doi.org/10.1053/j.semperi.2018.09.004 |
[36] | F?rster, K., Sass, S., Ehrhardt, H., Mous, D.S., Rottier, R.J., Oak, P., Schulze, A., Flemmer, A.W., Gronbach, J., Hübener, C., Desai, T., Eickelberg, O., Theis, F.J. and Hilgendorff, A. (2018) Early Identification of Bronchopulmonary Dysplasia Using Novel Biomarkers by Proteomic Screening. Amer-ican Journal of Respiratory and Critical Care Medicine, 197, 1076-1080. https://doi.org/10.1164/rccm.201706-1218LE |
[37] | Wu, Y.T., Chen, W.J., Hsieh, W.S., Tsao, P.N., Yu, S.L., Lai, C.Y., Lee, W.C. and Jeng, S.F. (2013) MicroRNA Expression Aberration Associated with Bronchopulmonary Dysplasia in Preterm Infants: A Preliminary Study. Respiratory Care, 58, 1527-1535. https://doi.org/10.4187/respcare.02166 |
[38] | Zhang, X., Xu, J., Wang, J., Gortner, L., Zhang, S., Wei, X., Song, J., Zhang, Y., Li, Q. and Feng, Z. (2013) Reduction of microRNA-206 Contributes to the Development of Bronchopulmo-nary Dysplasia through Up-Regulation of Fibronectin 1. PLOS ONE, 8, e74750. https://doi.org/10.1371/journal.pone.0074750 |
[39] | Yang, Y., Qiu, J., Kan, Q., Zhou, X.G. and Zhou, X.Y. (2013) MicroRNA Expression Profiling Studies on Bronchopulmonary Dysplasia: A Systematic Review and Meta-Analysis. Genetics and Molecular Research: GMR, 12, 5195-5206.
https://doi.org/10.4238/2013.October.30.4 |
[40] | Xu, Q., Yu, J., Liu, D., Tan, Q. and He, Y. (2022) The Airway Microbiome and Metabolome in Preterm Infants: Potential Biomarkers of Bronchopulmonary Dysplasia. Frontiers in Pe-diatrics, 10, Article ID: 862157.
https://doi.org/10.3389/fped.2022.862157 |
[41] | Lohmann, P., Luna, R.A., Hollister, E.B., Devaraj, S., Mistretta, T.A., Welty, S.E. and Versalovic, J. (2014) The Airway Microbiome of Intubated Premature Infants: Characteristics and Changes That Predict the Development of Bronchopulmonary Dysplasia. Pediatric Research, 76, 294-301. https://doi.org/10.1038/pr.2014.85 |