全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

吉西他滨的耐药性及其结构修饰研究进展
Research Progress in Drug Resistance and Structural Modification of Gemcitabine

DOI: 10.12677/PI.2023.122010, PP. 81-86

Keywords: 吉西他滨,耐药性,结构修饰
Gemcitabine
, Drug Resistance, Structural Modification

Full-Text   Cite this paper   Add to My Lib

Abstract:

吉西他滨是FDA批准为一种治疗多种癌症的化疗药物,被广泛应用于治疗各种实体瘤。虽然吉西他滨在临床上成功应用,但其较短的血浆半衰期,向细胞扩散较差,以及不良毒性降低其化疗潜力。吉西他滨的临床表现受到其不满意的药代动力学参数和易失活的严重限制,主要是由于吉西他滨快速脱氨作用,以及活化吉西他滨的脱氧胞苷激酶(DCK)缺乏和核苷转运蛋白的改变等。因此,设计合成吉西他滨的前体药物以提高吉西他滨的治疗效果至关重要。
Gemcitabine is a chemotherapy drug approved by FDA for the treatment of multiple cancers, and is widely used for the treatment of various solid tumors. Although gemcitabine has been successfully used in clinical practice, its short plasma half-life, poor cell diffusion and adverse toxicity reduce its chemotherapy potential. The clinical performance of gemcitabine is severely limited by its unsatis-fied pharmacokinetic parameters and easy inactivation, mainly due to the rapid deamination of gemcitabine, the lack of deoxycytidine kinase (DCK) activated by gemcitabine and the change of nucleoside transporter. Therefore, it is very important to design and synthesize the precursor drugs of gemcitabine to improve the therapeutic effect of gemcitabine.

References

[1]  Hui, Y.F. and Reitz, J. (2012) Gemcitabine: A Critical Nucleoside for Cancer Therapy. Current Medicinal Chemistry, 19, 1076-1087.
https://doi.org/10.2174/092986712799320682
[2]  Gesto, D.S., Cerqueira, N., Fernandes, P.A. and Ramos, M.J. (2012) Gemcitabine: A Critical Nucleoside for Cancer Therapy. Current Medicinal Chemistry, 19, 1076-1087.
https://doi.org/10.2174/092986712799320682
[3]  Hertel, L.W., Kroin, J.S., Misner, J.W. and Tustin, J.M. (1988) Synthesis of 2-deoxy-2,2-difluoro-D-ribose and 2-deoxy-2,2’-difluoro-D-ribofuranosyl Nucleosides. The Journal of Organic Chemistry, 53, 2406-2409.
https://doi.org/10.1021/jo00246a002
[4]  Hertel, L.W., Boder, G.B., Kroin, J.S., et al. (1990) Evaluation of the Antitumor Activity of Gemcitabine (2’,2’-difluoro-2’-deoxycytidine). Cancer Research, 50, 4417-4422.
[5]  Moysan, E., Bastiat, G. and Benoit, J.-P. (2013) Gemcitabine versus Modified Gemcitabine: A Review of Several Promising Chemical Modifications. Molecular Pharmaceutics, 10, 430-444.
https://doi.org/10.1021/mp300370t
[6]  Abbruzzese, J.L., Grunewald, R., Weeks, E.A., Gravel, D., Adams, T., Nowak, B., Mineishi, S., Tarassoff, P., Satterlee, W. and Raber, M.N. (1991) A Phase I Clinical, Plasma, and Cellular Pharmacology Study of Gemcitabine. Journal of Clinical Oncology, 9, 491-498.
https://doi.org/10.1200/JCO.1991.9.3.491
[7]  Hu, G., Li, F., Ouyang, K., et al. (2011) Intrinsic Gemcitabine Re-sistance in a Novel Pancreatic Cancer Cell Line. International Journal of Oncology, 40, 798-806.
[8]  MMoysaoysan, E., Bastiat, G. and Benoit, J.-P. (2013) Gemcitabine versus Modified Gemcitabine: A Review of Several Promising Chemical Modifications. Molecular Pharmaceutics, 10, 430-444.
https://doi.org/10.1021/mp300370t
[9]  Dubey, R.D., Saneja, A., Gupta, P.K. and Gupta, P.N. (2016) Recent Advances in Drug Delivery Strategies for Improved Ther-apeutic Efficacy of Gemcitabine. European Journal of Pharmaceutical Sciences, 93, 147-162.
https://doi.org/10.1016/j.ejps.2016.08.021
[10]  Dasanu, C.A. (2008) Gemcitabine: Vascular Toxicity and Pro-thrombotic Potential. Expert Opinion on Drug Safety, 7, 703-716.
https://doi.org/10.1517/14740330802374262
[11]  Cavaliere, A., Probst, K.C., Westwell, A.D. and Slusarczyk, M. (2017) Fluorinated Nucleosides as an Important Class of Anticancer and Antiviral Agents. Future Medicinal Chemistry, 9, 1809-1833.
https://doi.org/10.4155/fmc-2017-0095
[12]  Reddy, L.H. and Couvreur, P. (2009) Squalene: A Natural Triterpene for Use in Disease Management and Therapy. Advanced Drug Delivery Reviews, 61, 1412-1426.
https://doi.org/10.1016/j.addr.2009.09.005
[13]  Sobot, D., Mura, S., Yesylevskyy, S.O., et al. (2017) Conjugation of Squalene to Gemcitabine as Unique Approach Exploiting Endogenous Lipoproteins for Drug Delivery. Nature Com-munications, 8, Article No. 15678.
https://doi.org/10.1038/ncomms15678
[14]  Réjiba, S., Reddy, L.H., Bigand, C., et al. (2011) Squalenoyl Gemcita-bine Nanomedicine Overcomes the Low Efficacy of Gemcitabine Therapy in Pancreatic Cancer. Nanomedicine: Nano-technology, Biology and Medicine, 7, 841-849.
https://doi.org/10.1016/j.nano.2011.02.012
[15]  Harivardhan Reddy, L., Ferreira, H., Dubernet, C., et al. (2008) Oral Absorption and Tissue Distribution of a New Squalenoyl Anticancer Nanomedicine. Journal of Nanoparticle Re-search, 10, 887-891.
https://doi.org/10.1007/s11051-007-9322-7
[16]  Suk, J.S., Xu, Q., Kim, N., Hanes, J. and Ensign, L.M. (2016) PEGylation as a Strategy for Improving Nanoparticle-Based Drug and Gene Delivery. Advanced Drug Delivery Reviews, 99, 28-51.
https://doi.org/10.1016/j.addr.2015.09.012
[17]  Zhao, X., Si, J., Huang, D., Li, K., Xin, Y. and Sui, M. (2020) Application of Star Poly(ethylene glycol) Derivatives in Drug Delivery and Controlled Release. Journal of Controlled Release, 323, 565-577.
https://doi.org/10.1016/j.jconrel.2020.04.039
[18]  Mero, A., Clementi, C., Veronese, F.M. and Pasut, G. (2011) Covalent Conjugation of Poly(Ethylene Glycol) to Proteins and Peptides: Strategies and Methods. Bioconjugation Pro-tocols, 751, 95-129.
https://doi.org/10.1007/978-1-61779-151-2_8
[19]  Adema, A.D., Bijnsdorp, I.V., Sandvold, M.L., Verheul, H.M. and Peters, G.J. (2009) Innovations and Opportunities to Improve Conventional (Deoxy)nucleoside and Fluoropyrimi-dine Analogs in Cancer. Current Medicinal Chemistry, 16, 4632-4643.
https://doi.org/10.2174/092986709789878229
[20]  Bergman, A.M., Adema, A.D., Balzarini, J., et al. (2011) Anti-proliferative Activity, Mechanism of Action and Oral Antitumor Activity of CP-4126, a Fatty Acid Derivative of Gem-citabine, in in Vitro and in Vivo Tumor Models. Investigational New Drugs, 29, 456-466.
https://doi.org/10.1007/s10637-009-9377-7
[21]  Pradere, U., Garnier-Amblard, E.C., Coats, S.J., Amblard, F. and Schinazi, R.F. (2014) Synthesis of Nucleoside Phosphate and Phosphonate Prodrugs. Chemical Reviews, 114, 9154-9218.
https://doi.org/10.1021/cr5002035
[22]  Blagden, S.P., Rizzuto, I., Suppiah, P., et al. (2018) An-ti-Tumour Activity of a First-in-Class Agent NUC-1031 in Patients with Advanced Cancer: Results of a Phase I Study. British Journal of Cancer, 119, 815-822.
https://doi.org/10.1038/s41416-018-0244-1
[23]  Kazmi, F., Nicum, S., Roux, R.L., et al. (2021) A Phase Ib Open-Label, Dose-Escalation Study of NUC-1031 in Combination with Carboplatin for Recurrent Ovarian Cancer. Clin-ical Cancer Research, 27, 3028-3038.
https://doi.org/10.1158/1078-0432.CCR-20-4403

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133