全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

CYP450底物、抑制剂、诱导剂及种属特异性的研究进展
Research Progress of CYP450 Substrates, Inhibitors, Inducers and Species Specificity

DOI: 10.12677/PI.2023.122009, PP. 70-80

Keywords: 细胞色素P450,抑制剂,诱导剂,探针底物,种属差异
Cytochrome P450
, Inhibitor, Inducer, Probe Substrate, Species Differences

Full-Text   Cite this paper   Add to My Lib

Abstract:

细胞色素P450是由多种同工酶组成的超家族,在内源性与外源性物质的I相代谢中占据主导地位。本文就细胞色素P450同工酶相关的探针底物、抑制剂、诱导剂及动物种属的特异性选择进行了综述,以期为细胞色素P450相关实验设计提供借鉴和参考。
Cytochrome P450 is a superfamily composed of multiple isoenzymes, which plays a dominant role in phase I metabolism of endogenous and exogenous substances. This review included the specific of probe substrates, inhibitors, inducers and species related to cytochrome P450 isoenzymes, in order to provide reference for the design of cytochrome P450 related experiments.

References

[1]  Tornio, A. and Backman, J.T. (2018) Cytochrome P450 in Pharmacogenetics: An Update. Advances in Pharmacology, 83, 3-32.
https://doi.org/10.1016/bs.apha.2018.04.007
[2]  Palrasu, M. and Siddavaram, N. (1969) Cytochrome P450 Structure, Function and Clinical Significance: A Review. Current Drug Targets, 19, 38-54.
[3]  Ma, Q. and Lu, A. (2007) CYP1A Induction and Human Risk Assessment: An Evolving Tale of in Vitro and in Vivo Studies. Drug Me-tabolism and Disposition, 35, 1009-1016.
https://doi.org/10.1124/dmd.107.015826
[4]  Klomp, F., Wenzel, C., Drozdzik, M., et al. (2020) Drug-Drug Interactions Involving Intestinal and Hepatic CYP1A Enzymes. Pharmaceutics, 12, 1-25.
https://doi.org/10.3390/pharmaceutics12121201
[5]  Zhang, Q.Y., Dunbar, D. and Kaminsky, L.S. (2003) Characterization of Mouse Small Intestinal Cytochrome P450 Expression. Drug Metabolism and Disposition, 31, 1346-1351.
https://doi.org/10.1124/dmd.31.11.1346
[6]  Bogaards, J.J., Bertrand, M., Jackson, P., et al. (2000) Determining the Best Animal Model for Human Cytochrome P450 Activities: A Comparison of Mouse, Rat, Rabbit, Dog, Micropig, Monkey and Man. Xenobiotica, 30, 1131-1152.
https://doi.org/10.1080/00498250010021684
[7]  Guo, J., Zhu, X., Badawy, S., et al. (2021) Metabolism and Mechanism of Human Cytochrome P450 Enzyme 1A2. Current Drug Metabolism, 22, 40-49.
https://doi.org/10.2174/18755453MTEyCOTgcx
[8]  Hinson, J.A. (1983) Reactive Metabolites of Phenacetin and Acetaminophen: A Review. Environmental Health Perspectives, 49, 71-79.
https://doi.org/10.1289/ehp.834971
[9]  Grzegorzewski, J., Bartsch, F., Kller, A., et al. (2021) Pharmacokinetics of Caffeine: A Systematic Analysis of Reported Data for Application in Metabolic Phenotyping and Liver Function Testing. Frontiers in Pharmacology, 12, Article ID: 752826.
https://doi.org/10.1101/2021.07.12.452094
[10]  Faber, M.S., Jetter, A. and Fuhr, U. (2010) Assessment of CYP1A2 Activity in Clinical Practice: Why, How, and When. Basic Clini-cal Pharmacology Toxicology, 97, 125-134.
https://doi.org/10.1111/j.1742-7843.2005.pto_973160.x
[11]  Lu, J., Shang, X., Zhong, W., et al. (2020) New Insights of CYP1A in Endogenous Metabolism: A Focus on Single Nucleotide Polymorphisms and Diseases. Acta Pharmaceutica Sinica B, 10, 91-104.
https://doi.org/10.1016/j.apsb.2019.11.016
[12]  胡云珍, 姚彤炜. 细胞色素P4501A的研究进展[J]. 中国药学杂志, 2003, 38(4): 246-250.
[13]  肖鹏, 周宏灏. 细胞色素氧化酶CYP1A2的研究进展[J]. 中南大学学报, 2008, 33(5): 456-460.
[14]  Doran, A.C., Burchett, W., Landers, C., et al. (2022) Defining the Selectivity of Chemical Inhibi-tors Used for Cytochrome P450 Reaction Phenotyping: Overcoming Selectivity Limitations with a Six-Parameter Inhibi-tion Curve-Fitting Approach. Drug Metabolism and Disposition, 50, 1259-1271.
https://doi.org/10.1124/dmd.122.000884
[15]  Yamazoe, Y. and Yoshinari, K. (2019) Prediction of Regioselectivity and Preferred Order of Metabolisms on CYP1A2-Mediated Reactions Part 3: Difference in Substrate Specificity of Hu-man and Rodent CYP1A2 and the Refinement of Predicting System. Drug Metabolism Pharmacokinetics, 34, 217-232.
https://doi.org/10.1016/j.dmpk.2019.02.001
[16]  Liu, J., Sridhar, J. and Foroozesh, M. (2013) Cytochrome P450 Family 1 Inhibitors and Structure-Activity Relationships. Molecules, 18, 14470-14495.
https://doi.org/10.3390/molecules181214470
[17]  Nguyen, V., Espiritu, M. and Elbarbry, F. (2020) Development and Validation of a Sensitive and Specific LC-MS/MS Cocktail Assay for CYP450 Enzymes: Application to Study the Effect of Catechin on Rat Hepatic CYP Activity. Biomedical Chromatography, 34, e4789.
https://doi.org/10.1002/bmc.4789
[18]  Kawalek, J.C. and Andrews, A.W. (1980) The Effect of Solvents on Drug Metabolism in Vitro. Drug Metabolism and Disposition, 8, 380-384.
[19]  Hosono, H., Kumondai, M., Maekawa, M., et al. (2017) Functional Characterization of 34 CYP2A6 Allelic Variants by Assessment of Nicotine C-Oxidation and Coumarin 7-Hydroxylation Activities. Drug Metabolism and Disposition, 45, 279-285.
https://doi.org/10.1124/dmd.116.073494
[20]  Bagdas, D., Muldoon, P.P., Zhu, A.Z., et al. (2014) Effects of Methoxsalen, a CYP2A5/6 Inhibitor, on Nicotine Dependence Behaviors in Mice. Neuropharmacology, 85, 67-72.
https://doi.org/10.1016/j.neuropharm.2014.05.006
[21]  Zhang, W., Kilicarslan, T., Tyndale, R.F., et al. (2001) Evaluation of Methoxsalen, Tranylcypromine, and Tryptamine as Specific and Selective CYP2A6 Inhibitors in Vitro. Drug Metabolism and Disposition, 29, 897-902.
[22]  Martignoni, M., Groothuis, G.M. and de Kanter, R. (2006) Spe-cies Differences between Mouse, Rat, Dog, Monkey and Human CYP-Mediated Drug Metabolism, Inhibition and In-duction. Expert Opinion on Drug Metabolism Toxicology, 2, 875-894.
https://doi.org/10.1517/17425255.2.6.875
[23]  Juvonen, R.O., Kuusisto, M., Fohrgrup, C., et al. (2016) Inhibitory Effects and Oxidation of 6-Methylcoumarin, 7-Methylcoumarin and 7-Formylcoumarin via Human CYP2A6 and Its Mouse and Pig Orthologous Enzymes. Xenobiotica, 46, 14-24.
https://doi.org/10.3109/00498254.2015.1048327
[24]  Li, L., Zhang, Q.Y. and Ding, X. (2018) A CYP2B6-Humanized Mouse Model and Its Potential Applications. Drug Metabolism Pharmacokinetics, 33, 2-8.
https://doi.org/10.1016/j.dmpk.2018.01.001
[25]  Klaassen, T., Jetter, A., Tomalik-Scharte, D., et al. (2008) As-sessment of Urinary Mephenytoin Metrics to Phenotype for CYP2C19 and CYP2B6 Activity. European Journal Clini-cal Pharmacology, 64, 387-398.
https://doi.org/10.1007/s00228-007-0416-z
[26]  Mango, K., Kiss, A.F., Fekete, F., et al. (2022) CYP2B6 Allelic Variants and Non-Genetic Factors Influence CYP2B6 Enzyme Function. Scientific Reports, 12, Article No. 2984.
https://doi.org/10.1038/s41598-022-07022-9
[27]  Wang, P.F., Neiner, A. and Kharasch, E.D. (2019) Efavirenz Metabolism: Influence of Polymorphic CYP2B6 Variants and Stereochemistry. Drug Metabolism and Disposition, 47, 1195-1205.
https://doi.org/10.1124/dmd.119.086348
[28]  Patel, R., Barker, J. and ElShaer, A. (2020) Pharmaceu-tical Excipients and Drug Metabolism: A Mini-Review. International Journal of Molecular Sciences, 21, Article No. 8224.
https://doi.org/10.3390/ijms21218224
[29]  Turpeinen, M., Raunio, H. and Pelkonen, O. (2006) The Func-tional Role of CYP2B6 in Human Drug Metabolism: Substrates and Inhibitors in Vitro, in Vivo and in Silico. Current Drug Metabolism, 7, 705-714.
https://doi.org/10.2174/138920006778520633
[30]  Spatzenegger, M., Liu, H., Wang, Q., et al. (2003) Analysis of Differential Substrate Selectivities of CYP2B6 and CYP2E1 by Site-Directed Mutagenesis and Molecular Modeling. Journal of Pharmacology and Experimental Theraprutics, 304, 477-487.
https://doi.org/10.1124/jpet.102.043323
[31]  Kawashima, Y., Hagiwara, M., Inoue, Y., et al. (2002) Evaluation of Dextromethorphan N-Demethylation Activity as a Biomarker for Cytochrome P450 3A Activity in Man. Pharmacology and Toxicology, 90, 82-88.
https://doi.org/10.1034/j.1600-0773.2002.900205.x
[32]  Al-Jenoobi, F.I., Al-Thukair, A.A., Alam, M.A., et al. (2014) Effect of Garden Cress Seeds Powder and Its Alcoholic Extract on the Metabolic Activity of CYP2D6 and CYP3A4. Evidence-Based Complementary and Alternative Medicine, 2014, Article ID: 634592.
https://doi.org/10.1155/2014/634592
[33]  Shaul, C., Blotnick, S., Adar, L., et al. (2022) Phenytoin Metabolic Ratio, a Marker of CYP2C9 Activity, Is Superior to the CYP2C9 Genotype as a Predictor of (S)-Warfarin Clearance. Clinical Pharmacokinetics, 61, 1187-1198.
https://doi.org/10.1007/s40262-022-01141-2
[34]  Rettie, A.E. and Jones, J.P. (2005) Clinical and Toxicological Relevance of CYP2C9: Drug-Drug Interactions and Pharmacogenetics. Annual Review Pharmacology and Toxicology, 45, 477-494.
https://doi.org/10.1146/annurev.pharmtox.45.120403.095821
[35]  Daly, A.K., Rettie, A.E., Fowler, D.M., et al. (2018) Pharmacogenomics of CYP2C9: Functional and Clinical Considerations. Journal of Personalized Medicine, 8, 1-31.
https://doi.org/10.3390/jpm8010001
[36]  Uehara, S., Yoneda, N., Higuchi, Y., et al. (2021) Me-thyl-Hydroxylation and Subsequent Oxidation to Produce Carboxylic Acid Is the Major Metabolic Pathway of Tolbut-amide in Chimeric TK-NOG Mice Transplanted with Human Hepatocytes. Xenobiotica, 51, 582-589.
https://doi.org/10.1080/00498254.2021.1875515
[37]  Rudesheim, S., Selzer, D., Fuhr, U., et al. (2022) Physio-logically-Based Pharmacokinetic Modeling of Dextromethorphan to Investigate Interindividual Variability within CYP2D6 Activity Score Groups. CPT Pharmacometrics Systems Pharmacology, 11, 494-511.
https://doi.org/10.1002/psp4.12776
[38]  Uehara, S., Ishii, S., Uno, Y., et al. (2017) Regio- and Stereo-Selective Oxidation of a Cardiovascular Drug, Metoprolol, Mediated by Cytochrome P450 2D and 3A Enzymes in Marmoset Liv-ers. Drug Metabolism and Disposition, 45, 896-899.
https://doi.org/10.1124/dmd.117.075630
[39]  Cazet, L., Bul-teau, S., Evin, A., et al. (2018) Interaction between CYP2D6 Inhibitor Antidepressants and Codeine: Is This Relevant. Expert Opinion on Drug Metabolism Toxicology, 14, 879-886.
https://doi.org/10.1080/17425255.2018.1496236
[40]  Fernandez-Abascal, J., Ripullone, M., Valeri, A., et al. (2018) β-Naphtoflavone and Ethanol Induce Cytochrome P450 and Protect towards MPP (+) Toxicity in Human Neuroblastoma SH-SY5Y Cells. International Journal of Molecular Sciences, 19, Article No. 3369.
https://doi.org/10.3390/ijms19113369
[41]  Thorn, H.A., Lundahl, A., Schrickx, J.A., et al. (2011) Drug Metabo-lism of CYP3A4, CYP2C9 and CYP2D6 Substrates in Pigs and Humans. European Journal of Pharmaceutical Scienc-es, 43, 89-98.
https://doi.org/10.1016/j.ejps.2011.03.008
[42]  Mahli, A., Erwin, T.W. and Hellerbrand, C. (2019) Establishment of a p-Nitrophenol Oxidation-Based Assay for the Analysis of CYP2E1 Activity in Intact Hepatocytes in Vitro. Toxicol-ogy Mechanisms and Methods, 29, 219-223.
https://doi.org/10.1080/15376516.2018.1539800
[43]  Yamamura, Y., Koyama, N. and Umehara, K. (2015) Com-prehensive Kinetic Analysis and Influence of Reaction Components for Chlorzoxazone 6-Hydroxylation in Human Liver Microsomes with CYP Antibodies. Xenobiotica, 45, 353-360.
https://doi.org/10.3109/00498254.2014.985760
[44]  Hohmann, N., Blank, A., Burhenne, J., et al. (2019) Simulta-neous Phenotyping of CYP2E1 and CYP3A Using Oral Chlorzoxazone and Midazolam Microdoses. Britain Journal of Clinical Pharmacology, 85, 2310-2320.
https://doi.org/10.1111/bcp.14040
[45]  Pratt-Hyatt, M., Lin, H.L. and Hollenberg, P.F. (2010) Mechanism-Based Inactivation of Human CYP2E1 by Diethyldithocarbamate. Drug Metabolism and Disposition, 38, 2286-2292.
https://doi.org/10.1124/dmd.110.034710
[46]  Santes-Palacios, R., Olguin-Reyes, S., Hernandez-Ojeda, S.L., et al. (2020) Differential Inhibition of Naringenin on Human and Rat Cytochrome P450 2E1 Activity. Toxicology in Vitro, 69, Article ID: 105009.
https://doi.org/10.1016/j.tiv.2020.105009
[47]  Denisov, I.G., Grinkova, Y.V., Camp, T., et al. (2021) Midazolam as a Probe for Drug-Drug Interactions Mediated by CYP3A4: Homotropic Allosteric Mechanism of Site-Specific Hy-droxylation. Biochemistry-Us, 60, 1670-1681.
https://doi.org/10.1021/acs.biochem.1c00161
[48]  Kapetas, A.J., Sorich, M.J., Rodrigues, A.D., et al. (2019) Guidance for Rifampin and Midazolam Dosing Protocols to Study Intestinal and Hepatic Cytochrome P450 (CYP) 3A4 Induction and De-induction. AAPS Journal, 21, 78.
https://doi.org/10.1208/s12248-019-0341-y
[49]  Niwa, T., Yasuda, S., Yamamoto, Y., et al. (2021) Contribution of the Human Cytochrome P450 2C Subfamily to the Metabolism of and the Interactions with Endogenous Compounds Including Steroid Hormones. Die Pharmazie, 76, 611-613.
[50]  Kandel, S.E., Han, L.W., Mao, Q.C., et al. (2017) Dig-ging Deeper into CYP3A Testosterone Metabolism: Kinetic, Regioselectivity, and Stereoselectivity Differences between CYP3A4/5 and CYP3A7. Drug Metabolism and Disposition, 45, 1266-1275.
https://doi.org/10.1124/dmd.117.078055
[51]  于敏, 张双庆, 闻镍, 等. 细胞色素P450酶系体外药物代谢研究方法进展[J]. 中国药事, 2013, 27(1): 81-87.
[52]  Liu, Y., Hao, H., Liu, C., et al. (2007) Drugs as CYP3A Probes, Inducers, and Inhibitors. Drug Metabolism Reviews, 39, 699-721.
https://doi.org/10.1080/03602530701690374
[53]  Stresser, D.M., Broudy, M.I., Ho, T., et al. (2004) Highly Se-lective Inhibition of Human CYP3Aa in Vitro by Azamulin and Evidence That Inhibition Is Irreversible. Drug Metabo-lism and Disposition, 32, 105-112.
https://doi.org/10.1124/dmd.32.1.105
[54]  Zlabek, V. and Zamaratskaia, G. (2011) Comparison of Three Fluores-cent CYP3A Substrates in Two Vertebrate Models: Pig and Atlantic Salmon. Animal, 6, 633-640.
https://doi.org/10.1017/S1751731111002096
[55]  Jana, Z. and Meike, M. (2016) Inhibition of in Vitro Metabolism of Testosterone in Human, Dog and Horse Liver Microsomes to Investigate Species Differences. Toxicology in Vitro, 29, 468-478.
https://doi.org/10.1016/j.tiv.2014.12.018
[56]  Haarhoff, Z.E., Kramer, M.A., Zvyaga, T.A., et al. (2016) Compre-hensive Evaluation of Liver Microsomal Cytochrome P450 3A (CYP3A) Inhibition: Comparison of Cynomolgus Mon-key and Human. Xenobiotica, 47, 470-478.
https://doi.org/10.1080/00498254.2016.1203042
[57]  Uehara, S., Yoneda, N., Higuchi, Y., et al. (2016) Cyto-chrome P450-Dependent Drug Oxidation Activities and Their Expression Levels in Liver Microsomes of Chimeric TK-NOG Mice with Humanized Livers. Drug Metabolism Pharmacokinetics, 44, Article ID: 100454.
https://doi.org/10.1016/j.dmpk.2022.100454

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133