|
盆腔肿瘤中肠道菌群与放射性肠炎的相关性
|
Abstract:
盆腔放射治疗是盆腔恶性肿瘤的关键治疗手段,通常包括盆腔原发肿瘤病灶和盆腔淋巴引流区。在放射治疗中正常肠道会不可避免地受到损伤,这种现象临床上称为放射性肠炎(Radiation Enteritis),肠道菌群在放射性肠炎发病中起关键作用,在盆腔放疗后患者肠道微生物群的种类和分布发生了显著变化。但目前相关研究较少尚未就微生物群组成的变化得出一致的结果。本文旨在探讨与总结肠道菌群与放射性肠炎的现有相关机制,回顾了目前的治疗选择,了解放射性肠炎发病与肠道菌群的关系,为检测肠道菌群的改变预测肿瘤患者放疗期间是否会出现放射性肠炎,可能获得潜在治疗效益。
Pelvic radiation therapy is the key treatment for pelvic malignancies. It usually includes the pri-mary pelvic tumor lesion and pelvic lymphatic drainage area. Normal bowel is inevitably compro-mised during radiation therapy, i.e. this phenomenon is clinically called radiation enteritis. Intesti-nal flora plays a key role in the pathogenesis of radiation enteritis. The species and distribution of intestinal flora have significantly changed in patients following pelvic radiotherapy. However, few relevant studies have yet to reach consistent results regarding changes in flora composition. This paper aims to explore and summarize the existing mechanisms related to intestinal flora and radi-ation enteritis, review the current treatment options, and understand the relationship between the incidence of radiation enteritis and intestinal flora. In order to detect the changes in intestinal flora and predict whether radiation enteritis will occur in cancer patients during radiotherapy, potential therapeutic benefits may be obtained.
[1] | Atun, R., Jaffray, D.A., Barton, M.B., et al. (2015) Expanding Global Access to Radiotherapy. The Lancet Oncology, 16, 1153-1186. https://doi.org/10.1016/S1470-2045(15)00222-3 |
[2] | Barton, M.B., Jacob, S., Shafiq, J., et al. (2014) Estimating the Demand for Radiotherapy from the Evidence: A Review of Changes from 2003 to 2012. Radiotherapy and Oncology, 112, 140-144.
https://doi.org/10.1016/j.radonc.2014.03.024 |
[3] | van Vliet, M.J., Harmsen, H.J.M., de Bont Eveline, S.J.M., et al. (2010) The Role of Intestinal Microbiota in the Development and Severity of Chemotherapy-Induced Mucositis. PLOS Pathogens, 6, e1000879.
https://doi.org/10.1371/journal.ppat.1000879 |
[4] | Wang, L.N., Wang, X.H., Zhang, G.W., et al. (2021) The Impact of Pelvic Radiotherapy on the Gut Microbiome and Its Role in Radiation-Induced Diarrhoea: A Systematic Review. Ra-diation Oncology, 16, 187.
https://doi.org/10.1186/s13014-021-01899-y |
[5] | Hauer-Jensen, M., Denham, J.W. andreyev, H. and Jervoise, N. (2014) Radiation Enteropathy—Pathogenesis, Treatment and Prevention. Nature Reviews Gastroenterology & Hepatolo-gy, 11, 470-479.
https://doi.org/10.1038/nrgastro.2014.46 |
[6] | Barnett, D.J., Parker, C.L., Blodgett, D.W., et al. (2006) Under-standing Radiologic and Nuclear Terrorism as Public Health Threats: Preparedness and Response Perspectives. Journal of Nuclear Medicine, 47, 1653-1661. |
[7] | Klopp, A.H., Yeung, A.R., Deshmukh, S., et al. (2018) Patient-Reported Toxicity during Pelvic Intensity-Modulated Radiation Therapy: NRG Oncology-RTOG 1203. Journal of Clinical On-cology, 36, 2538-2544.
https://doi.org/10.1200/JCO.2017.77.4273 |
[8] | Sonis, S.T. (2004) The Pathobiology of Mucositis. Nature Reviews Cancer, 4, 277-284.
https://doi.org/10.1038/nrc1318 |
[9] | Marchesi, J.R., Adams, D.H., Fava, F., et al. (2016) The Gut Microbiota and Host Health: A New Clinical Frontier. Gut, 65, 330-339. https://doi.org/10.1136/gutjnl-2015-309990 |
[10] | García-Lafuente, A., Antolín, M., Guarner, F., et al. (1997) In-crimination of Anaerobic Bacteria in the Induction of Experimental Colitis. American Journal of Physiology, 272, G10-G15. https://doi.org/10.1152/ajpgi.1997.272.1.G10 |
[11] | 朱小月, 江柯炜, 陈海娇, 朱琳, 张婷, 刘鹏飞, 吴群英, 王坚, 殷华芳, 沈卫东. 盆腔恶性肿瘤患者放疗后肠道菌群变化与放射性肠炎的相关性研究[J]. 东南大学学报(医学版), 2022, 41(3): 364-371. |
[12] | Wang, Z.Q., Wang, Q.X., Wang, X., et al. (2019) Gut Microbial Dysbio-sis Is Associated with Development and Progression of Radiation Enteritis during Pelvic Radiotherapy. Journal of Cel-lular and Molecular Medicine, 23, 3747-3756. https://doi.org/10.1111/jcmm.14289 |
[13] | Zihni, C., Mills, C., Matter, K., et al. (2016) Tight Junctions: From Simple Barriers to Multifunctional Molecular Gates. Nature Reviews Molecular Cell Biology, 17, 564-580. https://doi.org/10.1038/nrm.2016.80 |
[14] | Bazzoni, G., Martinez-Estrada, O.M., Orsenigo, F., et al. (2000) Interaction of Junctional Adhesion Molecule with the Tight Junction Components ZO-1, Cin-gulin, and Occludin. Journal of Biological Chemistry, 275, 20520-20526.
https://doi.org/10.1074/jbc.M905251199 |
[15] | Ulluwishewa, D. anderson, R.C., McNabb, W.C., et al. (2011) Reg-ulation of Tight Junction Permeability by Intestinal Bacteria and Dietary Components. The Journal of Nutrition, 141, 769-776. https://doi.org/10.3945/jn.110.135657 |
[16] | Le Poul, E., Loison, C., Struyf, S., et al. (2003) Functional Characterization of Human Receptors for Short Chain Fatty Acids and Their Role in Polymorphonuclear Cell Activation. Journal of Biological Chemistry, 278, 25481-25489.
https://doi.org/10.1074/jbc.M301403200 |
[17] | Grander, C., Adolph, T.E., Wieser, V., et al. (2018) Akkermansia Muciniphila Recovery of Ethanol-Induced Depletion Ameliorates Alcoholic Liver Disease. Gut, 67, 891-901. https://doi.org/10.1136/gutjnl-2016-313432 |
[18] | Maslowski, K.M., Vieira, A.T., Ng, A., et al. (2009) Regulation of Inflammatory Responses by Gut Microbiota and Chemoattractant Receptor GPR43. Nature, 461, 1282-1286. https://doi.org/10.1038/nature08530 |
[19] | Karczewski, J., Troost, F.J., Konings, I., et al. (2010) Regulation of Hu-man Epithelial Tight Junction Proteins by Lactobacillus plantarum in Vivo and Protective Effects on the Epithelial Barrier. The American Journal of Physiology-Gastrointestinal and Liver Physiology, 298, G851-G859. https://doi.org/10.1152/ajpgi.00327.2009 |
[20] | Stringer, A.M. (2013) Interaction between Host Cells and Microbes in Chemotherapy-Induced Mucositis. Nutrients, 5, 1488-1499. https://doi.org/10.3390/nu5051488 |
[21] | Gerassy-Vainberg, S., Blatt, A., Danin-Poleg, Y., et al. (2018) Radiation Induces Proinflammatory Dysbiosis: Transmission of Inflammatory Susceptibility by Host Cytokine Induction. Gut, 67, 97-107.
https://doi.org/10.1136/gutjnl-2017-313789 |
[22] | Cui, M., Xiao, H.W., Li, Y., et al. (2017) Faecal Microbiota Transplantation Protects against Radiation-Induced Toxicity. EMBO Molecular Medicine, 9, 448-461. https://doi.org/10.15252/emmm.201606932 |
[23] | 刘亭, 杨彬珧, 雷超, 李晓媚, 李超, 刘志华. 亲属供体粪菌移植缓解放射性肠炎病案报告[J]. 中医药临床杂志, 2018, 30(3): 445-447. https://doi.org/10.16448/j.cjtcm.2018.0137 |
[24] | Redman, M.G., Ward, E.J. and Phillips, R.S. (2014) The Efficacy and Safety of Probiotics in People with Cancer: A Systematic Review. Annals of Oncology, 25, 1919-1929. https://doi.org/10.1093/annonc/mdu106 |
[25] | Reiff, C. and Kelly, D. (2010) Inflammatory Bowel Disease, Gut Bacteria and Probiotic Therapy. International Journal of Medical Microbiology, 300, 25-33. https://doi.org/10.1016/j.ijmm.2009.08.004 |
[26] | 管远志. 肠道菌群及其生物学意义[J]. 临床儿科杂志, 2009, 27(11): 1095-1097. |
[27] | 归崎峰, 杨云梅, 张发明. 肠道微生态制剂老年人临床应用中国专家共识(2019) [J]. 中华危重症医学杂志(电子版), 2019, 12(2): 73-79. |