全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

低温等离子体技术简介及在环境催化领域的应用进展
Introduction of Low Temperature Plasma and Progress of Application in Environmental Catalysis

DOI: 10.12677/MS.2023.133011, PP. 83-93

Keywords: 低温等离子体,环境催化,应用,建模
Low Temperature Plasma
, Environmental Catalysis, Applications, Modelling

Full-Text   Cite this paper   Add to My Lib

Abstract:

低温等离子体具有反应条件温和、启动快的特点,在环境催化领域有着广阔的应用前景,由于其中存在电子、自由基、中性分子等多种化学物种,催化过程复杂,催化机理仍有待进一步探索明晰。因此,需要更多的基础研究来了解这些机制。本文综述了低温等离子体的基本内容,以及近年来通过建模和实验所了解的低温等离子体在环境催化领域的最新技术及应用进展。
Low-temperature plasma, with mild reaction conditions and fast initiation, is well accepted to promise applications in environmental catalysis. Due to the presence of various chemical species such as electrons, free radicals and neutral molecules, the catalytic process is so complicated that the catalytic mechanism still needs to be further explored and clarified. Therefore, more funda-mental studies are needed to understand these mechanisms. In this review, we summarize the basic knowledge of low-temperature plasmas, as well as the latest technological and application advances of low-temperature plasmas in the field of environmental catalysis as understood by modeling and experiments in recent years.

References

[1]  von Keudell, A. and Schulz-von der Gathen, V. (2017) Foundations of Low-Temperature Plasma Physics—An Introduc-tion. Plasma Sources Science and Technology, 26, Article ID: 113001.
https://doi.org/10.1088/1361-6595/aa8d4c
[2]  Langmuir, I. (1928) Oscillations in Ionized Gases. Proceedings of the National Academy of Sciences, 14, 627-637.
https://doi.org/10.1073/pnas.14.8.627
[3]  Schram, D.C. (2009) Is Plasma Unique? The Presence of Electrons and the Importance of Charge. Plasma Sources Science and Technology, 18, Article ID: 014003.
https://doi.org/10.1088/0963-0252/18/1/014003
[4]  Kim, M.H., Cho, J.H., Ban, S.B., Choi, R.Y., Kwon, E.J., Park, S.J. and Eden, J.G. (2013) Efficient Generation of Ozone in Arrays of Microchannel Plasmas. Journal of Physics D: Applied Physics, 46, Article ID: 305201.
https://doi.org/10.1088/0022-3727/46/30/305201
[5]  Eden, J.G., Park, S.J., Herring, C.M. and Bulson, J.M. (2011) Microplasma Light Tiles: Thin Sheet Lamps for General Illumination. Journal of Physics D: Applied Physics, 44, Article ID: 224011.
https://doi.org/10.1088/0022-3727/44/22/224011
[6]  Chen, H.L., Lee, H.M., Chen, S.H., Chang, M.B., Yu, S.J. and Li, S.N. (2009) Removal of Volatile Organic Compounds by Single-Stage and Two-Stage Plasma Catalysis Systems: A Review of the Performance Enhancement Mechanisms, Current Status, and Suitable Applications. Environmental Sci-ence & Technology, 43, 2216-2227.
https://doi.org/10.1021/es802679b
[7]  Neyts, E.C., Ostrikov, K., Sunkara, M.K. and Bogaerts, A. (2016) Correc-tion: Plasma Catalysis: Synergistic Effects at the Nanoscale. Chemical Reviews, 116, 767-767.
https://doi.org/10.1021/acs.chemrev.6b00009
[8]  Rouwenhorst, K.H.R., Engelmann, Y., van’t Veer, K., Postma, R.S., Bogaerts, A. and Lefferts, L. (2020) Plasma-Driven Catalysis: Green Ammonia Synthesis with Intermittent Elec-tricity. Green Chemistry, 22, 6258-6287.
https://doi.org/10.1039/D0GC02058C
[9]  Liu, S., Winter, L.R. and Chen, J.G. (2020) Review of Plasma-Assisted Catalysis for Selective Generation of Oxygenates from CO2 and CH4. ACS Catalysis, 10, 2855-2871.
https://doi.org/10.1021/acscatal.9b04811
[10]  Okubo, M. (2022) Recent Development of Technology in Scale-Up of Plasma Reactors for Environmental and Energy Applications. Plasma Chemistry and Plasma Processing, 42, 3-33.
https://doi.org/10.1007/s11090-021-10201-7
[11]  Bogaerts, A., Tu, X., Whitehead, J.C., Centi, G., Lefferts, L., Guaitella, O., Azzolina-Jury, F., Kim, H.-H., Murphy, A.B., Schneider, W.F., Nozaki, T., Hicks, J. C, Rousseau, A., Thevenet, F., Khacef, A. and Carreon, M. (2020) The 2020 Plasma Catalysis Roadmap. Journal of Physics D: Applied Physics, 53, Article ID: 443001.
https://doi.org/10.1088/1361-6463/ab9048
[12]  Qu, M., Cheng, Z., Sun, Z., Chen, D., Yu, J. and Chen, J. (2021) Non-Thermal Plasma Coupled with Catalysis for VOCs Abatement: A Review. Process Safety and Environmental Pro-tection, 153, 139-158.
https://doi.org/10.1016/j.psep.2021.06.028
[13]  Li, Y., Fan, Z., Shi, J., Liu, Z. and Shangguan, W. (2014) Post Plasma-Catalysis for VOCs Degradation over Different Phase Structure MnO2 Catalysts. Chemical Engineering Journal, 241, 251-258.
https://doi.org/10.1016/j.cej.2013.12.036
[14]  Feng, X., Liu, H., He, C., Shen, Z. and Wang, T. (2018) Synergistic Effects and Mechanism of a Non-Thermal Plasma Catalysis System in Volatile Organic Compound Removal: A Review. Catalysis Science & Technology, 8, 936-954.
https://doi.org/10.1039/C7CY01934C
[15]  Kim, H.-H., Teramoto, Y., Negishi, N. and Ogata, A. (2015) A Multi-disciplinary Approach to Understand the Interactions of Nonthermal Plasma and Catalyst: A Review. Catalysis Today, 256, 13-22.
https://doi.org/10.1016/j.cattod.2015.04.009
[16]  Snoeckx, R. and Bogaerts, A. (2017) Plasma Technology—A Novel Solution for CO2 Conversion? Chemical Society Reviews, 46, 5805-5863.
https://doi.org/10.1039/C6CS00066E
[17]  Sivachandiran, L., Thevenet, F. and Rousseau, A. (2015) Isopropanol Removal Using MnXOY Packed Bed Non- Thermal Plasma Reactor: Comparison between Continuous Treatment and Sequential Sorption/Regeneration. Chemical Engineering Journal, 270, 327-335.
https://doi.org/10.1016/j.cej.2015.01.055
[18]  Nie, Y., Wang, J., Zhong, K., Wang, L. and Guan, Z. (2007) Syner-gy Study for Plasma-Facilitated C2H4 Selective Catalytic Reduction of NOx over Ag/γ-Al2O3 Catalyst. IEEE Transac-tions on Plasma Science, 35, 663-669.
https://doi.org/10.1109/TPS.2007.896764
[19]  Gholami, R., Stere, C.E., Goguet, A. and Hardacre, C. (2017) Non-Thermal-Plasma-Activated de-NOx Catalysis. IEEE Transactions on Plasma SciencePhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376, Article ID: 20170054.
https://doi.org/10.1098/rsta.2017.0054
[20]  Stere, C.E., Adress, W., Burch, R., Chansai, S., Goguet, A., Graham, W.G. and Hardacre, C. (2015) Probing a Non- Thermal Plasma Activated Heterogeneously Catalyzed Reaction Using in Situ DRIFTS-MS. ACS Catalysis, 5, 956-964.
https://doi.org/10.1021/cs5019265
[21]  Rajanikanth, B.S., Srinivasan, A.D. and Ravi, V. (2005) Discharge Plasma Treatment for NOx Reduction from Diesel Engine Exhaust: A Laboratory Investigation. IEEE Transactions on Dielec-trics and Electrical Insulation, 12, 72-80.
https://doi.org/10.1109/TDEI.2005.1394017
[22]  Rodriguez, M.M., Bill, E., Brennessel, W.W. and Holland, P.L. (2011) N2 Reduction and Hydrogenation to Ammonia by a Molecular Iron-Potassium Complex. Science, 334, 780-783.
https://doi.org/10.1126/science.1211906
[23]  Mehta, P., Barboun, P., Herrera, F.A., Kim, J., Rumbach, P., Go, D.B., Hicks, J.C. and Schneider, W.F. (2018) Overcoming Ammonia Synthesis Scaling Relations with Plasma-Enabled Catalysis. Nature Catalysis, 1, 269-275.
https://doi.org/10.1038/s41929-018-0045-1
[24]  Mehta, P., Barboun, P., Go, D.B., Hicks, J.C. and Schneider, W.F. (2019) Catalysis Enabled by Plasma Activation of Strong Chemical Bonds: A Review. ACS Energy Letters, 4, 1115-1133.
https://doi.org/10.1021/acsenergylett.9b00263
[25]  Rouwenhorst, K.H.R., Kim, H.-H. and Lefferts, L. (2019) Vibrationally Excited Activation of N2 in Plasma-Enhanced Catalytic Ammonia Synthesis: A Kinetic Analysis. ACS Sustainable Chemistry & Engineering, 7, 17515-17522.
https://doi.org/10.1021/acssuschemeng.9b04997
[26]  Hong, J., Pancheshnyi, S., Tam, E., Lowke, J.J., Prawer, S. and Murphy, A.B. (2017) Kinetic Modelling of NH3 Production in N2-H2 Non-Equilibrium Atmospheric-Pressure Plas-ma Catalysis. Journal of Physics D: Applied Physics, 50, Article ID: 154005.
https://doi.org/10.1088/1361-6463/aa6229
[27]  Van’t Veer, K., Engelmann, Y., Reniers, F. and Bogaerts, A. (2020) Plasma-Catalytic Ammonia Synthesis in a DBD Plasma: Role of Microdischarges and Their Afterglows. The Journal of Physical Chemistry C, 124, 22871-22883.
https://doi.org/10.1021/acs.jpcc.0c05110
[28]  Hong, J., Prawer, S. and Murphy, A.B. (2018) Plasma Catalysis as an Alternative Route for Ammonia Production: Status, Mechanisms, and Prospects for Progress. ACS Sustainable Chemistry & Engineering, 6, 15-31.
https://doi.org/10.1021/acssuschemeng.7b02381
[29]  Gorbanev, Y., Vervloessem, E., Nikiforov, A. and Bogaerts, A. (2020) Nitrogen Fixation with Water Vapor by Non- Equilibrium Plasma: Toward Sustainable Ammonia Production. ACS Sustainable Chemistry & Engineering, 8, 2996- 3004.
https://doi.org/10.1021/acssuschemeng.9b07849
[30]  Sharma, R.K., Patel, H., Mushtaq, U., Kyriakou, V., Zafei-ropoulos, G., Peeters, F., Welzel, S., van de Sanden, M.C.M. and Tsampas, M.N. (2021) Plasma Activated Electrochem-ical Ammonia Synthesis from Nitrogen and Water. ACS Energy Letters, 6, 313-319.
https://doi.org/10.1021/acsenergylett.0c02349
[31]  Bogaerts, A., Kozák, T., van Laer, K. and Snoeckx, R. (2015) Plasma-Based Conversion of CO2: Current Status and Future Challenges. Faraday Discussions, 183, 217-232.
https://doi.org/10.1039/C5FD00053J
[32]  Thema, M., Bauer, F. and Sterner, M. (2019) Power-to-Gas: Electrolysis and Methanation Status Review. Renewable and Sustainable Energy Reviews, 112, 775-787.
https://doi.org/10.1016/j.rser.2019.06.030
[33]  D?bek, R., Azzolina-Jury, F., Travert, A. and Maugé, F. (2019) A Review on Plasma-Catalytic Methanation of Carbon Dioxide—Looking for an Efficient Catalyst. Renewable and Sus-tainable Energy Reviews, 116, Article ID: 109427.
https://doi.org/10.1016/j.rser.2019.109427
[34]  Ahmad, F., Lovell, E.C., Masood, H., Cullen, P.J., Ostrikov, K.K., Scott, J.A. and Amal, R. (2020) Low-Temperature CO2 Methanation: Synergistic Effects in Plasma-Ni Hybrid Catalytic System. ACS Sustainable Chemistry & Engineering, 8, 1888-1898.
https://doi.org/10.1021/acssuschemeng.9b06180
[35]  Parastaev, A., Hoeben, W.F.L.M., van Heesch, B.E.J.M., Kosinov, N. and Hensen, E.J.M. (2018) Temperature- Programmed Plasma Surface Reaction: An Approach to Determine Plasma-Catalytic Performance. Applied Catalysis B: Environmental, 239, 168-177.
https://doi.org/10.1016/j.apcatb.2018.08.011
[36]  Wang, L., Yi, Y., Guo, H. and Tu, X. (2018) Atmospheric Pres-sure and Room Temperature Synthesis of Methanol through Plasma-Catalytic Hydrogenation of CO2. ACS Catalysis, 8, 90-100.
https://doi.org/10.1021/acscatal.7b02733
[37]  Kim, J., Abbott, M.S., Go, D.B. and Hicks, J.C. (2016) En-hancing C-H Bond Activation of Methane via Temperature-Controlled, Catalyst-Plasma Interactions. ACS Energy Letters, 1, 94-99.
https://doi.org/10.1021/acsenergylett.6b00051
[38]  Kim, J., Go, D.B. and Hicks, J.C. (2017) Synergistic Effects of Plasma-Catalyst Interactions for CH4 Activation. Physical Chemistry Chemical Physics, 19, 13010-13021.
https://doi.org/10.1039/C7CP01322A
[39]  Sheng, Z., Watanabe, Y., Kim, H.-H., Yao, S. and Nozaki, T. (2020) Plasma-Enabled Mode-Selective Activation of CH4 for Dry Reforming: First Touch on the Kinetic Analysis. Chemical Engineering Journal, 399, Article ID: 125751.
https://doi.org/10.1016/j.cej.2020.125751
[40]  Wang, L., Yi, Y., Wu, C., Guo, H. and Tu, X. (2017) One-Step Reforming of CO2 and CH4 into High-Value Liquid Chemicals and Fuels at Room Temperature by Plasma-Driven Ca-talysis. Angewandte Chemie International Edition, 56, 13679-13683.
https://doi.org/10.1002/anie.201707131

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133