全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

层状氮掺杂石墨炔半拉胀行为研究
Study on the Half-Auxetic Behavior of Layered Nitrogen-Doped Graphdiyne

DOI: 10.12677/CMP.2023.121001, PP. 1-8

Keywords: 氮掺杂石墨炔,半拉胀,双轴应变,密度泛函理论
Nitrogen-Doped Graphdiyne
, Half-Auxeticity, Biaxial Strain, Density Functional Theory

Full-Text   Cite this paper   Add to My Lib

Abstract:

层状氮掺杂石墨炔(NGDY)的成功合成(Nano Energy, 2018, 44, 144)引起了凝聚态物理和材料学领域科学家的广泛关注。在此,我们首先基于密度泛函理论计算确定了NGDY原子层的最佳堆垛次序,然后研究了其在双轴应变下的力学和电子性质。结果表明,NGDY能量最低的构型是ABC-堆垛结构。值得注意的是,在沿a、b方向的双轴应变下,该材料在c方向上表现出半拉胀行为。具体表现为:在双轴压缩应变下表现为普通材料的性质,即c方向晶格参数随双轴压缩应变增大而增大;在双轴拉伸应变下表现出拉胀材料的性质,即c方向晶格参数随双轴拉伸应变增大而增大。另外,在?0.05 ≤ ε ≤ 0.05的应变范围内,不管是拉伸应变还是压缩应变的增加均会导致体系带隙的增大。NGDY材料这种不同寻常的机械和电子性质表明其在新颖机械电子器件设计方面具有巨大潜力。
The successful synthesis of layered nitrogen-doped graphdiyne (NGDY) (Nano Energy, 2018, 44, 144) has attracted wide attention from scientists in condensed matter physics and materials. Firstly, we calculated the optimal stacking order of the NGDY atomic layer based on density functional theory, and then investigated its mechanical and electronic properties under biaxial strains. The results show that ABC-stacking structure has the lowest energy. It is worth noting that under biaxial strains along directions a and b, the material exhibits a half-auxetic behavior in direction c. Specifically, it shows the properties of ordinary materials under biaxial compression strains, that is, the lattice parameters in the c direction increase with the increase of biaxial compression strain. The lattice parameters in the c direction increase with the increase of the biaxial tensile strain. In addition, in the range of ?0.05 ≤ ε ≤ 0.05, the increase of both tensile strain and compressive strain will lead to the increase of band gap. The unusual mechanical and electronic properties of NGDY material indicate that it has great potential in the design of electromechanical devices.

References

[1]  Novoselov, K.S., Geim, A.K., Morozov, S., Jiang, V.D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A.A. (2004) Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669.
https://doi.org/10.1126/science.1102896
[2]  Mortazavi, B., Shahrokhi, M., Shapeev, A.V., Rabczuk, T. and Zhuang, X. (2019) Prediction of C7N6 and C9N4: Stable and Strong Porous Carbon-Nitride Nanosheets with At-tractive Electronic and Optical Properties. Journal of Materials Chemistry C, 7, 10908-10917.
https://doi.org/10.1039/C9TC03513C
[3]  Tan, C., Cao, X., Wu, X.-J., He, Q., Yang, J., Zhang, X., Chen, J., Zhao, W., Han, S., Nam, G.-H., Sindoro, M. and Zhang, H. (2017) Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews, 117, 6225-6331.
https://doi.org/10.1021/acs.chemrev.6b00558
[4]  Gao, X., Liu, H., Wang, D. and Zhang, J. (2019) Graphdiyne: Synthesis, Properties, and Applications. Chemical Society Reviews, 48, 908-936.
https://doi.org/10.1039/C8CS00773J
[5]  Yu, H., Xue, Y. and Li, Y. (2019) Graphdiyne and Its Assembly Architectures: Synthesis, Functionalization, and Applications. Advanced Materials, 31, Article ID: 1803101.
https://doi.org/10.1002/adma.201803101
[6]  Baughman, R.H., Eckhardt, H. and Kertesz, M. (1987) Struc-ture-Property Predictions for New Planar Forms of Carbon: Layered Phases Containing sp2 and sp Atoms. The Journal of Chemical Physics, 87, 6687-6699.
https://doi.org/10.1063/1.453405
[7]  Li, G., Li, Y., Liu, H., Guo, Y., Li, Y. and Zhu, D. (2010) Architecture of Graphdiyne Nanoscale Films. Chemical Communications, 46, 3256-3258.
https://doi.org/10.1039/b922733d
[8]  He, J., Wang, N., Cui, Z., Du, H., Fu, L., Huang, C., Yang, Z., Shen, X., Yi, Y., Tu, Z. and Li, Y. (2017) Hydrogen Substituted Graphdiyne as Carbon-Rich Flexible Electrode for Lithium and Sodium Ion Batteries. Nature Communications, 8, 1172.
https://doi.org/10.1038/s41467-017-01202-2
[9]  Wang, N., Li, X., Tu, Z., Zhao, F., He, J., Guan, Z., Huang, C., Yi, Y. and Li, Y. (2018) Synthesis and Electronic Structure of Boron-Graphdiyne with an sp-Hybridized Carbon Skeleton and Its Application in Sodium Storage. Angewandte Chemie International Edition, 57, 3968-3973.
https://doi.org/10.1002/anie.201800453
[10]  Jiao, Y., Du, A., Hankel, M., Zhu, Z., Rudolph, V. and Smith, S.C. (2011) Graphdiyne: A Versatile Nanomaterial for Electronics and Hydrogen Purification. Chemical Communications, 47, 11843-11845.
https://doi.org/10.1039/c1cc15129k
[11]  Tang, H., Hessel, C.M., Wang, J., Yang, N., Yu, R., Zhao, H. and Wang, D. (2014) Two-Dimensional Carbon Leading to New Photoconversion Processes. Chemical Society Reviews, 43, 4281-4299.
https://doi.org/10.1039/C3CS60437C
[12]  Huang, C., Li, Y., Wang, N., Xue, Y., Zuo, Z., Liu, H. and Li, Y. (2018) Progress in Research into 2D Graphdiyne-Based Materials. Chemical Reviews, 118, 7744-7803.
https://doi.org/10.1021/acs.chemrev.8b00288
[13]  Yang, Z., Shen, X., Wang, N., He, J., Li, X., Wang, X., Hou, Z., Wang, K., Gao, J. and Jiu, T. (2018) Graphdiyne Containing Atomically Precise N Atoms for Efficient Anchoring of Lithium Ion. ACS Applied Materials & Interfaces, 11, 2608-2617.
https://doi.org/10.1021/acsami.8b01823
[14]  Mortazavi, B., Makaremi, M., Shahrokhi, M., Fan, Z. and Rabczuk, T. (2018) N-Graphdiyne Two-Dimensional Nanomaterials: Semiconductors with Low Thermal Conduc-tivity and High Stretchability. Carbon, 137, 57-67.
https://doi.org/10.1016/j.carbon.2018.04.090
[15]  Kresse, G. and Furthmüller, J. (1996) Efficient Iterative Schemes for ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Physical Review B, 54, 11169-11186.
https://doi.org/10.1103/PhysRevB.54.11169
[16]  Kresse G. and Joubert, D. (1999) From Ultrasoft Pseudo-potentials to the Projector Augmented-Wave Method. Physical Review B, 59, 1758.
https://doi.org/10.1103/PhysRevB.59.1758
[17]  Grimme, S. (2006) Semiempirical GGA-Type Density Func-tional Constructed with a Long-Range Dispersion Correction. Journal of Computational Chemistry, 27, 1787-1799.
https://doi.org/10.1002/jcc.20495
[18]  Grimme, S., Antony, J., Ehrlich, S. and Krieg, H. (2010) A Consistent and Accurate ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. The Journal of Chemical Physics, 132, Article ID: 154104.
https://doi.org/10.1063/1.3382344
[19]  Vydrov, O.A. and Voorhis, T.V. (2009) Nonlocal van der Waals Density Functional Made Simple. Physical Review Letters, 103, Article ID: 063004.
https://doi.org/10.1103/PhysRevLett.103.063004
[20]  Monkhorst, H.J. and Pack, J.D. (1976) Special Points for Brillouin-Zone Integrations. Physical Review B, 13, 5188-5192.
https://doi.org/10.1103/PhysRevB.13.5188
[21]  Heyd, J., Scuseria, G.E. and Ernzerhof, M. (2003) Hybrid Functionals Based on a Screened Coulomb Potential. The Journal of Chemical Physics, 118, 8207-8215.
https://doi.org/10.1063/1.1564060
[22]  Zhou, M., Liu, Z., Ming, W., Wang, Z. and Liu, F. (2014) sd2 Graphene: Kagome Band in a Hexagonal Lattice. Physical Review Letters, 113, Article ID: 236802.
https://doi.org/10.1103/PhysRevLett.113.236802
[23]  Endo, S., Oka, T. and Aoki, H. (2010) Tight-Binding Photonic Bands in Metallophotonic Waveguide Networks and Flat Bands in Kagome Lattices. Physical Review B, 81, Article ID: 113104.
https://doi.org/10.1103/PhysRevB.81.113104
[24]  Pan, H., Han, Y., Li, J., Zhang, H., Du, Y. and Tang, N. (2018) Half-Metallicity in a Honeycomb-Kagome-Lattice Mg3C2 Monolayer with Carrier Doping. Physical Chemistry Chemical Physics, 20, 14166-14173.
https://doi.org/10.1039/C8CP01727A
[25]  Zheng, Q., Luo, G., Liu, Q., Quhe, R., Zheng, J., Tang, K., Gao, Z., Nagase, S. and Lu, J. (2012) Structural and Electronic Properties of Bilayer and Trilayer Graphdiyne. Nanoscale, 4, 3990-3996.
https://doi.org/10.1039/c2nr12026g
[26]  Shi, L.-B., Zhang, Y.-Y., Xiu, X.-M. and Dong, H.-K. (2018) Structural Characteristics and Strain Behavior of Two-Dimensional C3N: First Principles Calculations. Carbon, 134, 103-111.
https://doi.org/10.1016/j.carbon.2018.03.076
[27]  Guan, S., Cheng, Y., Liu, C., Han, J., Lu, Y., Yang, S.A. and Yao, Y. (2015) Effects of Strain on Electronic and Optic Properties of Holey Two-Dimensional C2N Crystals. Ap-plied Physics Letters, 107, Article ID: 231904.
https://doi.org/10.1063/1.4937269
[28]  Evans, K.E. and Alderson A. (2000) Auxetic Materials: Functional Materials and Structures from Lateral Thinking. Advanced Materials, 12, 617-628.
https://doi.org/10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617>3.0.CO;2-3
[29]  Dagdelen, J., Montoya, J., de Jong, M. and Persson, K. (2017) Computational Prediction of New Auxetic Materials. Nature Communications, 8, 323.
https://doi.org/10.1038/s41467-017-00399-6
[30]  Wang, X., Wang, Y., Miao, M., Zhong, X., Lv, J., Cui, T., Li, J., Chen, L., Pickard, C.J. and Ma, Y. (2012) Cagelike Diamondoid Nitrogen at High Pressures. Physical Review Letters, 109, Article ID: 175502.
https://doi.org/10.1103/PhysRevLett.109.175502

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133