|
新型抗荷裤返回状态下神经–肌肉活动影响研究
|
Abstract:
针对返回座椅工况,研究了新型抗荷裤在返回坐位下对神经–肌肉活动的影响。急性实验中5名受试者在平卧位、返回坐位、着抗荷裤平卧位、着抗荷裤返回坐位下检测了腓总神经(CPN)节段性运动神经传导;慢性实验中2名受试者分别在返回坐位下着抗荷裤4小时,定时检测了节段性运动神经传导。研究发现:着抗荷裤后,返回坐位相比于平卧位CPN踝复合肌肉动作电位(CMAP)波幅降低13.4 ± 3.1%且潜伏期缩短;相比于不着服,返回坐位着服后腓骨头CMAP波幅升高7.8 ± 1.3%。返回坐位下着抗荷裤2小时,CPN远端和近端CMAP波幅分别降低28.0%和45.4%,4小时后降低增加至78.2%和75.2%,但小腿和足部主动运动可缓解不适。返回坐位下长时着抗荷裤CPN远端和近端CMAP波幅降低,主动运动有利于耐受。
To simulate reentry scenario, the neuromuscular control was studied under reentry posture with and without new anti-g suit. In the short-term experiment, five subjects adapted to the supine or reentry posture and with or without anti-g suit. Then segment motor nerve conduction of common peroneal nerve (CPN) was tested. In the long-term experiment, two subjects sat in the reentry chair wearing anti-g suit for 4 hours. And the CPN motor nerve conduction was monitored periodically. Wearing anti-g suit, the amplitudes of ankle compound muscle action potential (CMAP) under reentry posture were 13.4 ± 3.1% lower than that under supine and had shorter latencies. Under reentry posture, wearing anti-g suit increased the amplitudes of head of fibula CMAP by 7.8 ± 1.3%. After sitting in the reentry chair with anti-g suit for 2 hours, the amplitudes of the distal and proximal CMAP decreased by 28.0% and 45.4%. And the drop increased to 78.2% and 75.2% after 4 hours. The discomfort can be relieved by active calf and foot movements. Long lasting sitting in the reentry chair with anti-g suit induced the decrease of distal and proximal CAMP amplitudes. Periodic active movements benefitted for the tolerance.
[1] | Nicogossian, A., Pool, S. and Sawin, C. (2001) Status and Efficacy of Countermeasures to Physiological Decondi-tioning from Space. Acta Astronautica, 36, 393-398. https://doi.org/10.1016/0094-5765(95)00123-9 |
[2] | Perez, S.A., Charles, J.B., Fortner, G.W., Hurst, V. and Meck, J.V. (2003) Cardiovascular Effects of Anti-G Suit and Cooling Garment during Space Shuttle Re-Entry and Landing. Aviation, Space, and Environmental Medicine, 74, 753-757. |
[3] | Sides, M.B., Vernikos, J., Convertino, V.A., Stepanek, J., Tripp, L.D., Draeger, J., Hargens, A.R., Kourtifou-Papadeli, C., Pavy-Letraon, A., Russomano, T., Wong, J.Y., Buccello, R.R., Lee, P.H., Nangalia, V. and Saary, M.J. (2005) The Bellagio Report: Cardiovascular Risks of Spaceflight: Implications for the Future of Space Travel. Aviation, Space, and Environmental Medicine, 76, 877-895. |
[4] | Stenger, M.B., Lee, S.M.C., Westby, C.M., Ribeiro, L.C., Phillips, T.R., Martin, D.S. and Platts, S.H. (2013) Abdomen-High Elastic Gradient Compression Garments during Post-Spaceflight Stand Tests. Aviation, Space, and Environmental Medicine, 84, 459-466. https://doi.org/10.3357/ASEM.3528.2013 |
[5] | Kozlovskaya, I.B. and Grigoriev, A.I. (2004) Russian System of Countermeasures on Board of the International Space Station (ISS): The First Results. Acta Astronautica, 55, 233-237. https://doi.org/10.1016/j.actaastro.2004.05.049 |
[6] | Krutz, R.W., Ripley, G.L., Marshall, J.A. and Sawin, C.F. (1993) Comparative Performance of a Modified Space Shuttle Reentry Anti-G Suit (REAGS) with and without Pressure Socks. Seventh Annual Workshop on Space Operations Applications and Research (SOAR 1993), Volume 2, NTRS-NASA Technical Report 19940029149. |
[7] | 孙浩, 祝郁, 肖艳华, 王健全, 邓金辉, 王惠娟, 王林杰, 贾蕊溪, 马红磊. 模拟月地再入超重环境下新型压力裤防护效果研究[J]. 国际航空航天科学, 2022, 10(4): 84-91. https://doi.org/10.12677/JAST.2022.104009 |
[8] | American Association of Electrodiagnostic Medicine and OIney, R.K. (1999) Guidelines in Electrodiagnostic Medicine. Consensus Criteria for the Diagnosis of Partial Conduction Block. Muscle & Nerve. Supplement, 8, S225-S229. |
[9] | Boatright, S.L. (2010) Compression-Caused Peroneal Neuropathy: Commentary from a Biopsy-chologist. Southern Medical Journal, 103, 66-71. https://doi.org/10.1097/SMJ.0b013e3181c65778 |
[10] | Aprile, I., Caliandro, P., La Torre, G., Tonali, P., Fos-chini, M., Mondelli, M., Bertolini, C., Piazzini, D.B. and Padua, L. (2005) Multicenter Study of Peroneal Mo-noneuropathy: Clinical Neurophysiologic and Quality of Life Assessment. Journal of the Peripheral Nervous System, 10, 259 -268. https://doi.org/10.1111/j.1085-9489.2005.10304.x |
[11] | 佘永华, 向林, 江楠, 罗德艳, 赵磊, 马振超. 腓总神经卡压综合征的解剖学研究[J]. 四川解剖学杂志, 2008, 16(2): 3-4. |
[12] | 张宝书, 王选东. 腓总神经嵌压综合征[J]. 青岛医药卫生 2002, 34(5): 347-348. |
[13] | 刘明生, 崔丽英, 汤晓芙, 李本红, 杜华. 运动神经元病162例的节段性运动神经传导测定分析[J]. 中华神经科杂志, 2005, 38(11): 694-696. |
[14] | Kodaira, M., Sekijima, Y., Ohashi, N., Takahashi, Y., Ueno, K., Miyazaki, D. and Ikeda, S. (2016) Squatting-Induced Bilateral Peroneal Nerve Palsy in a Sewer Pipe Worker. Occupational Medicine, 67, 75-77.
https://doi.org/10.1093/occmed/kqw133 |
[15] | Thakker, D., Shah, N.J. and Trivedi, R.S. (2019) To Study the Effect of BMI on Nerve Conduction Velocity. International Journal of Basic and Applied Physiology, 8, 73-77. |
[16] | Fukuda, H. (2006) Bilateral Peroneal Nerve Palsy Caused by Intermittent Pneumatic Compression. Internal Medicine, 45, 93-94. https://doi.org/10.2169/internalmedicine.45.1459 |
[17] | Baima, J. and Krivickas, L. (2008) Evaluation and Treatment of Peroneal Neuropathy. Current Reviews in Musculoskeletal Medicine, 1, 147-153. https://doi.org/10.1007/s12178-008-9023-6 |
[18] | Sotaniemi, K.A. (1984) Slimmer’s Paraly-sis—Peroneal Neuropathy during Weight Reduction. Journal of Neurology, Neurosurgery and Psychiatry, 47, 564-566. https://doi.org/10.1136/jnnp.47.5.564 |
[19] | Inniss, A.M., Rice, B.L. and Smith, S.M. (2009) Dietary Support of Long-Duration Head-Down Bed Rest. Aviation, Space, and Environmental Medicine, 80, A9-A14. https://doi.org/10.3357/ASEM.BR04.2009 |
[20] | Zak, A. (2020) Cheget Cosmonaut Chair. http://www.russianspaceweb.com/cheget.html |
[21] | Garcia, M. (2013) Astronauts Practice Launching in NASA’s New Orion Spacecraft.
https://www.nasa.gov/content/astronauts-practice-launching-in-nasa-s-new-orion-spacecraft |
[22] | 杨雷, 张柏楠, 郭斌, 石泳, 黄震. 新一代多用途载人飞船概念研究[J]. 航空学报, 2015, 36(3): 703-713. |