全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

旋风分离器高温除尘性能的数值研究
Numerical Study on High-Temperature Dedusting Performance of Cyclone Separator

DOI: 10.12677/IJFD.2023.111001, PP. 1-12

Keywords: 旋风分离器,高温除尘,性能,颗粒,分离效率
Cyclone Separator
, High-Temperature Dust Removal, Performances, Particles, Separation Efficiency

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于RNGk-ε湍流模型和dpm离散相模型对旋风分离器的高温除尘分离性能开展数值研究,探究了旋风分离器的入口速度、温度、密度以及壳体热边界条件对固体颗粒分离效率的影响。结果表明,当入口流速不变时,温度在900 K时较600 K分离效率下降8.62%;当温度不变时,入口流速为25 m/s时较5 m/s分离效率上升了15.28%;当入口条件不变时,2800 kg/m3的石膏较600 kg/m3的新型灰提高了23.34%;在壳体非绝热条件下温度沿径向由内向外升高,分离效率在壳体非绝热条件下比壳体绝热条件下高13.15%,但在温度超过800 K后这种差异将提高到27.02%。
In this paper, the high-temperature dust removal and separation performance of cyclone separator is numerically studied, and the effects of inlet velocity, temperature, particle density and shell thermal boundary conditions on the dust removal efficiency of cyclone separator are explored. The results showed that when the inlet flow rate was constant, the separation efficiency decreased by 8.62% at 900 K compared with 600 K. When the temperature is constant, the separation efficiency increases by 15.28% when the inlet flow rate is 25 m/s compared with 5 m/s. When the inlet conditions remain unchanged, the 2800 kg/m3 gypsum is 23.34% higher than the 600 kg/m3 new ash. Under the non-adiabatic condition of the shell, the temperature increases radially from the inside to the outside, and the separation efficiency is 13.15% higher than that under the adiabatic condition of the shell, but this difference will increase to 27.02% when the temperature exceeds 800 K.

References

[1]  夏兴祥. 高温除尘技术综述[J]. 化工机械, 2000(1): 49-54.
[2]  刘瑛, 王洁. 基于旋风分离技术的循环式吸油烟机设计[J]. 机械科学与技术, 2012, 31(10): 1690-1693.
[3]  Li, Q., Wang, J.J. and Xu, W.W. (2020) Investigation on Separation Performance and Structural Optimization of a Two-Stage Series Cyclone Using CPFD and RSM. Advanced Powder Technology, 31, 3706-3714.
https://doi.org/10.1016/j.apt.2020.07.006
[4]  Zhang, Y.M., Yu, G.Y., Jin, R.Z., et al. (2020) Investigation into Water Vapor and Flue Gas Temperatures on the Separation Capability of a Novel Cyclone Separator. Powder Technology, 361, 171-178.
https://doi.org/10.1016/j.powtec.2019.09.048
[5]  杜慧娟, 王川保, 马红和, 等. 入口收缩角度对旋风分离器分离性能的影响[J]. 热力发电, 2019, 48(11): 43-48.
[6]  Babaoglu, N.U., Parvaz, F., Hosseini, S.H., et al. (2021) Influence of the Inlet Cross-Sectional Shape on the Performance of a Multi-Inlet Gas Cyclone. Powder Technology, 384, 82-99.
https://doi.org/10.1016/j.powtec.2021.02.008
[7]  时铭显, 金有海. 新型高效多管旋风分离器的开发及应用[J]. 炼油设计, 1996(3): 28-31.
[8]  李文琦, 陈建义. 旋风分离器高温性能试验研究[J]. 中国石油大学学报(自然科学版), 2006, 30(3): 97-100.
[9]  许世森, 许晋源, 许传凯. 温度和压力对旋风分离器高温除尘性能影响的研究[J]. 动力工程, 1997, 17(2): 52-58.
[10]  侯广信. 旋风分离器高温分离模型的实验研究[D]: [硕士学位论文]. 青岛: 中国石油大学, 2008.
[11]  钱付平, 章名耀. 温度对旋风分离器分离性能影响的数值研究[J]. 动力工程, 2006, 26(2): 253-257.
[12]  Gimbun, J., Chuah, T.G. and Fakhru’l-Razi, A. (2005) The Influence of Temperature and Inlet Velocity on Cyclone Pressure Drop: A CFD Study. Chemical Engineering and Processing, 44, 7-12.
https://doi.org/10.1016/j.cep.2004.03.005
[13]  Shin, M.S., Kim, H.S. and Jang, D.S. (2006) A Numerical and Ex-perimental Study on a High Efficiency Cyclone Dust Separator for High Temperature and Pressurized Environments. Ap-plied Thermal Engineering, 25, 1821-1835.
https://doi.org/10.1016/j.applthermaleng.2004.11.002
[14]  万古军, 魏耀东, 时铭显. 高温条件下旋风分离器内气相流场的数值模拟[J]. 过程工程学报, 2007, 7(5): 871-876.
[15]  刁永发, 沈恒根, 许晋源, 许世森. 高温旋风分离分级效率的理论计算及其分析[J]. 化工机械, 2000, 27(1): 18-21.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133