全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Miniaturized Electronically Steerable Parasitic Array Antenna

DOI: 10.4236/ojapr.2023.111001, PP. 1-10

Keywords: 5G, IoT, Antenna, Phased Array, Wifi, ESPAR, Wireless

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this article we propose a miniaturized dual-band electronically steerable parasitic array radiator (ESPAR) antenna. The antenna can generate up to two steerable beams. The beam-steering range of the proposed antenna is 360˚ in the azimuth plane. The antenna’s eual-band coverage includes the frequency ranges from 2.3 GHz to 2.53 GHz and from 2.9 GHz to 3.7 GHz. The antenna consists of six folded parasitic monopole elements surrounding an active conical element. The folded monopole element design offers three times lower antenna height than that of the conventional ESPAR antennas. The active element has conical shape and it is larger in length than the parasitic monopole elements, this enables the dual-band operation. Thus, the proposed design is not only smaller than the conventional ESPAR antennas but it also achieves dual-band operation. Despite its compact design, the antenna has a peak gain of 6.3 dBi, which is equivalent to the gain of conventional ESPAR antennas. These characteristics make the antenna a good candidate for next generation communication systems.

References

[1]  Dai, L.L., Wang, B.C., Wang, M., Yang, X., Tan, J.B., et al. (2020) Reconfigurable Intelligent Surface-Based Wireless Communications: Antenna Design, Prototyping, and Experimental Results. IEEE Access, 8, 45913-45923.
https://doi.org/10.1109/ACCESS.2020.2977772
[2]  Groth, M., Rzymowski, M., Nyka, K. and Kulas, L. (2020) ESPAR Antenna-Based WSN Node with DoA Estimation Capability. IEEE Access, 8, 91435-91447.
https://doi.org/10.1109/ACCESS.2020.2994364
[3]  Liu, H.T., Gao, S. and Loh, T.H. (2012) Electrically Small and Low Cost Smart Antenna for Wireless Communication. IEEE Transactions on Antennas and Propagation, 60, 1540-1549.
https://doi.org/10.1109/TAP.2011.2180300
[4]  Zhang, L., Gao, S., Luo, Q., Young, P.R. and Li, Q.X. (2016) Planar Ultrathin Small Beam-Switching Antenna. IEEE Transactions on Antennas and Propagation, 64, 5054-5063.
https://doi.org/10.1109/TAP.2016.2620490
[5]  Iigusa, K., Sato, K. and Fujise, M. (2006) A Slim Electronically Steerable Parasitic Array Radiator Antenna. 2006 6th International Conference on ITS Telecommunications, Chengdu, 21-23 June 2006, 386-389.
https://doi.org/10.1109/ITST.2006.288922
[6]  Liu, H., Gao, S. and Loh, T. (2013) Small Director Array for Low-Profile Smart Antennas Achieving Higher Gain. IEEE Transactions on Antennas and Propagation, 61, 162-168.
https://doi.org/10.1109/TAP.2012.2219841
[7]  Iigusa, K. and Ohira, T. (2004) A Simple and Accurate Mathematical Model of Electronically Steerable Parasitic Array Radiator Antennas. First IEEE Consumer Communications and Networking Conference 2004, Las Vegas, 5-8 January 2004, 312-315.
[8]  Abdullah, N. and Kuwahara, Y. (2010) A Study of ESPAR Antenna. 2010 International Conference on Microwave and Millimeter Wave Technology, Chengdu, 8-11 May 2010, 1999-2002.
https://doi.org/10.1109/ICMMT.2010.5525159
[9]  Lu, J., Ireland, D. and Schlub, R. (2004) Development of ESPAR Antenna Array Using Numerical Modelling Techniques. Proceedings. ICCEA 2004. 2004 3rd International Conference on Computational Electromagnetics and Its Applications, 2004, Beijing, 1-4 November 2004, 182-185.
[10]  Tarkowski, M. and Kulas, L. (2019) RSS-Based DoA Estimation for ESPAR Antennas Using Support Vector Machine. IEEE Antennas and Wireless Propagation Letters, 18, 561-565.
https://doi.org/10.1109/LAWP.2019.2891021

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133