A better understanding of population structure and genetic
diversity among cassava germplasm for African cassava mosaic disease and fresh
root yield traits is useful for cassava improvement programme.
Phenotype-based selection for these traits is cumbersome due to phenotypic
plasticity and difficulty in screening of phenotypic-induced variations. This
study assessed quantitative trait loci (QTL) regions associated with African
cassava mosaic disease (ACMD) and fresh storage root yield (FSRY) in 131
cassava (Manihot esculenta)
genotypes using a genome-wide association study (GWAS). The single
nucleotide polymorphism (SNP) loci and associated candidate genes, when
validated, would be a valuable resource for marker-assisted selection in the
breeding process for development of new cassava genotypes with improved resistance
to ACMD and desirable high root yield. Population structure analysis using
12,500 SNPs differentiated the 131 genotypes into five distinct sub-groups (K= 5). Marker-trait association (MTA) analysis using the generalized linear
model identified two QTL regions significant for ACMD and three for FSRY. This
study demonstrated that DArTseq markers are useful genomic resources for
genome-wide association studies of ACMD and FSRY traits in cassava for the
acceleration of varietal development and release.
References
[1]
Sánchez, T., Salcedo, E., Ceballos, H., Dufour, D., Mafla, G., Morante, N., Calle, F., Perez, J.C., Debouck, D., Jaramillo, G. and Moreno, I.X. (2009) Screening of Starch Quality Traits in Cassava (Manihot esculenta Crantz). Starch/Starke, 61, 12-19. https://doi.org/10.1002/star.200800058
[2]
Scott, G.J., Rosegrant, M.W. and Ringler, C. (2000) Roots and Tubers for the 21st Century: Trends, Projections, and Policy Options. No. 31, 2020 Vision Discussion Papers, International Food Policy Research Institute (IFPRI), Washington DC. https://econpapers.repec.org/paper/fpr2020dp/31.htm
[3]
Nassar, N.M.A. (2004) Cassava: Some Ecological and Physiological Aspects Related to Plant Breeding. Gene Conserve, 3, 229-245.
[4]
FAO (2020). https://knoema.com/atlas/sources/FAO
[5]
ITC International Trade Centre (2020) The Status of Cassava Production and Markets in Sierra Leone Preliminary Version (October 2020). 42 p. https://new-staging.intracen.org/media/file/6535
[6]
Tumuhimbise, R., Melis, R., Shanahan, P. and Kawuki, R. (2014) Genotype × Environment Interaction Effects on Early Fresh Storage Root Yield and Related Traits in Cassava. Crop Journal, 2, 329-337. https://doi.org/10.1016/j.cj.2014.04.008
Rao, V.R. and Hodgkin, T. (2002) Genetic Diversity and Conservation and Utilization of Plant Genetic Resources. Plant Cell, Tissue and Organ Culture, 68, 1-19. https://doi.org/10.1023/A:1013359015812
[9]
Ribeiro, M.N.O., Carvalho, S.P., Santos, J.B. and Antonio, R.P. (2011) Genetic Variability among Cassava Accessions Based on SSR Markers. Crop Breeding and Applied Biotechnology, 11, 263-269. https://doi.org/10.1590/S1984-70332011000300009
[10]
Andrade, E.K.V., Andrade Júnior, V.C., Laia, M.L., Fernandes, J.S.C., Oliveira, A.J.M. and Azevedo, A.M. (2017) Genetic Dissimilarity among Sweet Potato Genotypes Using Morphological and Molecular Descriptors. Acta Scientia Agronomy, 39, 447-455. https://doi.org/10.4025/actasciagron.v39i4.32847
[11]
Melchinger, A. (1999) Genetic Diversity and Heterosis. In: James, G. and Coors, S.P., Eds., The Genetics and Exploitation of Heterosis in Crops, American Society of Agronomy, Inc., Madison, 99-118. https://doi.org/10.2134/1999.geneticsandexploitation.c10
[12]
Okogbenin, E., Egesi, C.N., Olasanmi, B., Ogundapo, O., Kahya, S., Hurtado, P., Marin, J., Akinbo, O., Mba, C., Gomez, H., de Vicente, C., Baiyeri, S., Uguru, M., Ewa, F. and Fregene, M. (2012) Molecular Marker Analysis and Validation of Resistance to Cassava Mosaic Disease in Elite Cassava Genotypes in Nigeria. Crop Science, 52, 2576-2586. https://doi.org/10.2135/cropsci2011.11.0586
[13]
Adjebeng-Danquah, J., Manu-Aduening, J., Asante, I.K., Agyare, R.Y., Gracen, V. and Offei, S.K. (2020) Genetic Diversity and Population Structure Analysis of Ghanaian and Exotic Cassava Accessions Using Simple Sequence Repeat (SSR) Markers. Heliyon, 6, e03154. https://doi.org/10.1016/j.heliyon.2019.e03154
[14]
Gupta, P., Rustgi, S. and Mir, R. (2008) Array-Based High-Throughput DNA Markers for Crop Improvement. Heredity, 101, 5-18. https://doi.org/10.1038/hdy.2008.35
[15]
Agre, P.A., Norman, P.E., Asiedu, R. and Asfaw, A. (2021) Identification of Quantitative Trait Nucleotides and Candidate Gene for Tuber Yield and Mosaic Virus Tolerance in an Elite Population of White Guinea Yam (Dioscorea rotundata) Using Genome-Wide Association Scan. BMC Plant Biology, 21, 552. https://doi.org/10.1186/s12870-021-03314-w
[16]
Luo, Z., Tomasi, P., Fahlgren, N. and Abdel-Haleem, H. (2019) Genome-Wide Association Study (GWAS) of Leaf Cuticular Wax Components in Camelina sativa Identifies Genetic Loci Related to Intracellular Wax Transport. BMC Plant Biology, 19, 187. https://doi.org/10.1186/s12870-019-1776-0
[17]
Qiu, X., Gong, R., Tan, Y., Yu, S., et al. (2012) Mapping and Characterization of the Major Quantitative Trait Locus qSS7 Associated with Increased Length and Decreased Width of Rice Seeds. Theoretical and Applied Genetics, 125, 1717-1726. https://doi.org/10.1007/s00122-012-1948-x
[18]
Sánchez-Sevilla, J.F., Horvath, A., Botella, M.A., Gaston, A., Folta, K., Kilian, A., et al. (2015) Diversity Arrays Technology (DArT) Marker Platforms for Diversity Analysis and Linkage Mapping in a Complex Crop, the Octoploid Cultivated Strawberry (Fragaria× ananassa). PLOS ONE, 10, e0144960. https://doi.org/10.1371/journal.pone.0144960
[19]
Kawano, K. (2003) Thirty Years of Cassava Breeding for Productivity—Biological and Social Factors for Success. Crop Science, 43, 1325-1335. https://doi.org/10.2135/cropsci2003.1325
[20]
Okechukwu, R. and Dixon, A.G. (2008) Genetic Gains from 30 Years of Cassava Breeding in Nigeria for Storage Root Yield and Disease Resistance in Elite Cassava Genotypes. Journal of Crop Improvement, 22, 181-208. https://doi.org/10.1080/15427520802212506
[21]
Ceballos, H., Kawuki, R.S., Gracen, V.E., Yencho, G.C. and Hershey, C.H. (2015) Conventional Breeding, Marker-Assisted Selection, Genomic Selection and Inbreeding in Clonally Propagated Crops: A Case Study for Cassava. Theoretical and Applied Genetics, 128, 1647-1667. https://doi.org/10.1007/s00122-015-2555-4
[22]
Norman, P.E., Asfaw, A., Tongoona, P.B., Danquah, A., Danquah, E.Y. and Koeyer, D.D. (2018) Can Parentage Analysis Facilitate Breeding Activities in Root and Tuber Crops? Agriculture Journal, 8, 1-24. https://doi.org/10.3390/agriculture8070095
[23]
García-Ruiz, A., Cole, J.B., VanRaden, P.M., Wiggans, G.R., Ruiz-López, F.J. and Van Tassell, C.P. (2016) Changes in Genetic Selection Differentials and Generation Intervals in US Holstein Dairy Cattle as a Result of Genomic Selection. Proceedings of National Academy of Science, USA, 113, E3995. https://doi.org/10.1073/pnas.1519061113
[24]
Varshney, R.K., Terauchi, R. and McCouch, S.R. (2014) Harvesting the Promising Fruits of Genomics: Applying Genome Sequencing Technologies to Crop Breeding. PLOS Biology, 12, e1001883. https://doi.org/10.1371/journal.pbio.1001883
[25]
Jiang, G.L. (2013) Molecular Markers and Marker-Assisted Breeding in Plants. In: Andersen, S.B., Ed., Plant Breeding from Laboratories to Fields, IntechOpen, London, 45-83. https://doi.org/10.5772/52583
[26]
Fukuda, W.M.G., Guevara, C.L., Kawuk, R. and Ferguson, M.E. (2010) Selected Morphological and Agronomic Descriptors for the Characterization of Cassava. International Institute of Tropical Agriculture (IITA), Ibadan, 19 p.
[27]
Gilmour, A.R., Thompson, R. and Cullis, B.R. (1995) Average Information REML: An Efficient Algorithm for Variance Parameter Estimation. Biometrics, 51, 1440-1450. https://doi.org/10.2307/2533274
[28]
Butler, D.G., Cullis, B.R., Gilmour, A.A., Gogel, B.J. and Thome, R. (2018) ASReml-R Reference Manual Version 4. VSNi Ltd., Hemel Hempstead.
[29]
Borgognone, M.G., Butler, D.G., Ogbonnaya, F.C. and Dreccer, M.F. (2016) Molecular Marker Information in the Analysis of Multi-Environment Trials Helps Differentiate Superior Genotypes from Promising Parents. Crop Science, 56, 2612-2628. https://doi.org/10.2135/cropsci2016.03.0151
[30]
Ovenden, B., Milgate, A., Wade, L.J., Rebetzke, G.J. and Holland, J.B. (2018) Accounting for Genotype-by-Environment Interactions and Residual Genetic Variation in Genomic Selection for Water Soluble Carbohydrate Concentration in Wheat. G3 Genes Genome Genetics, 8, 1909-1919. https://doi.org/10.1534/g3.118.200038
[31]
Dellaporta, S.L., Wood, J. and Hicks, J.B. (1983) A Plant DNA Minipreparation: Version II. Plant Molecular Biology Report, 1, 19-21. https://doi.org/10.1007/BF02712670
[32]
Aljanabi, S.M. and Martinez, I. (1997) Universal and Rapid Salt-Extraction of High-Quality Genomic DNA for PCR-Based Techniques. Nucleic Acids Research, 25, 4692-4693. https://doi.org/10.1093/nar/25.22.4692
[33]
Kilian, A., Sanewski, G. and Ko, L. (2016) The Application of DArTseq Technology to Pineapple. Acta Horticulturae, 1111, 181-188. https://doi.org/10.17660/ActaHortic.2016.1111.27
[34]
Danecek, P., Auton, A., Abecasis, G., Albers, C.A., et al. (2011) The Variant Call Format and VCFtools. Bioinformatics, 27, 2156-2158. https://doi.org/10.1093/bioinformatics/btr330
[35]
Yin, L. (2019) Package “CMplot” 2019. https://github.com/YinLiLin/CMplot
[36]
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A.R., Bender, D., Maller, J., Sklar, P., de Bakker, P.I.W., Daly, M.J. and Sham, P.C. (2007) PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. American Journal of Human Genetics, 81, 559-575. https://doi.org/10.1086/519795
[37]
Le, S., Josse, J., Husson, F., et al. (2008) FactoMineR: An R Package for Multivariate Analysis. Journal of Statistics Software, 25, 1-18. https://doi.org/10.18637/jss.v025.i01
[38]
Pritchard, J.K., Stephens, M. and Donnelly, P. (2000) Inference of Population Structure Using Multilocus Genotype Data. Genetics, 155, 945-959. https://doi.org/10.1093/genetics/155.2.945
[39]
Falush, D., Stephens, M. and Pritchard, J.K. (2003) Inference of Population Structure Using Multilocus Genotype Data: Linked Loci and Correlated Allele Frequencies. Genetics, 164, 1567-1587. https://doi.org/10.1093/genetics/164.4.1567
[40]
Evanno, G., Regnaut, S. and Goudet, J. (2005) Detecting the Number of Clusters of Individuals Using the Software Structure: A Simulation Study. Molecular Ecology, 14, 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
[41]
Earl, D.A. and vonHoldt, B.M. (2012) Structure Harvester: A Website and Program for Visualizing Structure Output and Implementing the Evanno Method. Conservation and Genetic Resources, 4, 359-361. https://doi.org/10.1007/s12686-011-9548-7
[42]
Paradis, E. and Schliep, K. (2019) Ape 5.0: An Environment for Modern Phylogenetics and Evolutionary Analyses in R. Bioinformatics, 35, 526-528. https://doi.org/10.1093/bioinformatics/bty633
[43]
Piaskowski, J., Hardner, C., Cai, L., Zhao, Y., Iezzoni, A. and Peace, C. (2018) Genomic Heritability Estimates in Sweet Cherry Reveal Non-Additive Genetic Variance Is Relevant for Industry-Prioritized Traits. BMC Genetics, 19, 23. https://doi.org/10.1186/s12863-018-0609-8
[44]
Gatarira, C., Agre, P., Matsumoto, R., Edemodu, A., Adetimirin, V., Bhattacharjee, R., Asiedu, R. and Asfaw, A. (2020) Genome-Wide Association Analysis for Tuber Dry Matter and Oxidative Browning in Water Yam (Dioscorea alata L.). Plants, 9, 969. https://doi.org/10.3390/plants9080969
[45]
Ardlie, K.G., Lunetta, K.L. and Seielstad, M. (2002) Testing for Population Subdivision and Association in Four Case Control Studies. American Journal of Human Genetics, 71, 304-311. https://doi.org/10.1086/341719
[46]
Norman, P.E., Paterne, A.A., Danquah, A., Tongoona, P.B., et al. (2020) Paternity Assignment in White Guinea Yam (Dioscorea rotundata) Half-Sib Progenies from Polycross Mating Design Using SNP Markers. Plants, 2020, 527. https://doi.org/10.3390/plants9040527
[47]
Cao, J., Jiang, D., Zhao, Z. et al. (2018) Development of Chloroplast Genomic Resources in Chinese Yam (Dioscorea polystachya). BioMedical Research International, 2018, Article ID: 6293847. https://doi.org/10.1155/2018/6293847
[48]
Yang, J., Zaitlen, N.A., Goddard, M.E., Visscher, P.M. and Price, A.L. (2014) Advantages and Pitfalls in the Application of Mixed Model Association Methods. Nature Genetics, 46, 100-106. https://doi.org/10.1038/ng.2876
[49]
Ezenwaka, L., Del Carpio Dunia, P., Jannink, J.L., Rabbi, I., Danquah, E., Asante, I., Danquah, A., Blay, E. and Egesi, C. (2018) Genome-Wide Association Study of Resistance to Cassava Green Mite Pest and Related Traits in Cassava. Crop Science, 58, 1907-1918. https://doi.org/10.2135/cropsci2018.01.0024
[50]
Kayondo, S.I., Pino Del Carpio, D., Lozano, R., Ozimati, A., Wolfe, M., Baguma, Y., Gracen, V., Ofei, S., Ferguson, M., Kawuki, R. and Jannink, J-L. (2018) Genome-Wide Association Mapping and Genomic Prediction for CBSD Resistance in Manihot esculenta. Scientific Report, 8, Article No. 1549. https://doi.org/10.1038/s41598-018-19696-1
[51]
Wolfe, M.D., Rabbi, I.Y., Egesi, C., Hamblin, M., Kawuki, R., Kulakow, P., Lozano, R., Carpio, D.P.D., Ramu, P. and Jannink, J.-L. (2016) Genome-Wide Association and Prediction Reveals Genetic Architecture of Cassava Mosaic Disease Resistance and Prospects for Rapid Genetic Improvement. Plant Genome, 9, 1-13. https://doi.org/10.3835/plantgenome2015.11.0118
[52]
Ikeogu, U.N., Akdemir, D., Wolfe, M.D., Okeke, U.G., Amaefula, C., Jannink, J.-L. and Egesi, C.N. (2019) Genetic Correlation, Genome-Wide Association and Genomic Prediction of Portable NIRS Predicted Carotenoids in Cassava Roots. Frontiers in Plant Science, 10, Article No. 1570. https://doi.org/10.3389/fpls.2019.01570
[53]
Akano A., Dixon, A., Mba, C., Barrera, E. and Fregene, M. (2002) Genetic Mapping of a Dominant Gene Conferring Resistance to Cassava Mosaic Disease. Theoretical and Applied Genetics, 105, 521-525. https://doi.org/10.1007/s00122-002-0891-7
[54]
Rabbi, I.Y., Kayondo, S.I., Bauchet, G., Yusuf, M., Aghogho, C.I., Ogunpaimo, K., Uwugiaren, R., Smith, I.A., Peteti, P., Agbona, A., Parkes, E., Ezenwaka, L., Wolfe, M., Jannink, J.-L., Egesi, C. and Kulakow, P. (2020) Genome-Wide Association Analysis Reveals New Insights into the Genetic Architecture of Defensive, Agro-Morphological and Quality-Related Traits in Cassava. Plant Molecular Biology, 109, 195-213. https://doi.org/10.1101/2020.04.25.061440
[55]
Rabbi, I.Y., Hamblin, M.T., Kumar, P.L., Gedil, M.A., Ikpan, A.S., Jannink, J.L. and Kulakow, P.A. (2014) High-Resolution Mapping of Resistance to Cassava Mosaic Geminiviruses in Cassava Using Genotyping-by-Sequencing and Its Implications for Breeding. Virus Research, 186, 87-96. https://doi.org/10.1016/j.virusres.2013.12.028
[56]
Zhang, S., Chen, X., Lu, C., Ye, J., Zou, M., Lu, K. and Ma, P.A. (2018) Genome-Wide Association Studies of 11 Agronomic Traits in Cassava (Manihot esculenta Crantz). Frontiers in Plant Science, 9, 503. https://doi.org/10.3389/fpls.2018.00503
[57]
Bjorn, B., Keizer, P.L., Paulo, M.J., Visser, R.G., Van Eeuwijk, F.A. and Van Eck, H.J. (2014) Identification of Agronomically Important QTL in Tetraploid Potato Cultivars Using a Marker-Trait Association Analysis. Theoretical and Applied Genetics, 127, 731-748. https://doi.org/10.1007/s00122-013-2254-y