In the last two decades, unprecedented changes have taken place in the
frequency and severity of wildfires; in different regions of the world, some
fires were even classified as megafires. Although there are studies about the
diverse effects of fire, which have made significant theoretical contributions,
a comprehensive review of the changes in fire research is required to
understand worldwide patterns, particularly in those countries where fire
activity is on the rise, such is the case of Mexico. The objective of this
study was to analyze the trends in the research on wildfires published in
Mexico and worldwide over a 40-year timescale. For this purpose, the Web of
Science database, bibliometric tools, and the keywords TI=
Forest fire* OR TI= Wildfire* were used to extract as many articles as possible related to
fires from 1980 to 2020, without being restricted to those studies whose title
included any of the variants of the keywords. There were 8458 publications
about fires in the vegetation cover, with a notable increase in the frequency
of studies in the previous decade; 52% of the studies were concentrated in five
countries and 20% of the articles focused on the study of different aspects of
the soil. Mexico ranks thirteenth in volume of scientific production and
studies in the country have focused mainly on the description of the
quantitative relationship between the size of the affected area and the number
of occurrences in the landscape, meanwhile, studies on fires and the
consequences on the biotic interactions have been little explored.
References
[1]
Abatzoglou, J. T., Williams, A. P., & Barbero, R. (2019). Global Emergence of Anthropogenic Climate Change in Fire Weather Indices. Geophysical Research Letters, 46, 326-336. https://doi.org/10.1029/2018GL080959
[2]
Abram, N. J., Henley, B. J., Sen Gupta, A., Lippmann, T. J., Clarke, H., Dowdy, A. J. et al. (2021). Connections of Climate Change and Variability to Large and Extreme Forest Fires in Southeast Australia. Communications Earth & Environment, 2, Article No. 8. https://doi.org/10.1038/s43247-020-00065-8
[3]
Attri, V., Dhiman, R., & Sarvade, S. (2020). A Review on Status, Implications and Recent Trends of Forest Fire Management. Archives of Agriculture and Environmental Science, 5, 592-602. https://doi.org/10.26832/24566632.2020.0504024
[4]
Banks, S. C., Knight, E. J., McBurney, L., Blair, D., & Lindenmayer, D. B. (2011). The Effects of Wildfire on Mortality and Resources for an Arboreal Marsupial: Resilience to Fire Events but Susceptibility to Fire Regime Change. PLOS ONE, 6, e22952. https://doi.org/10.1371/journal.pone.0022952
[5]
Bautista Vicente, F. S. (2015). Emisiones Totales Anuales de CO2 por Incendios Forestales en el Periodo 1999-2010 en México y Estimación de índice de Riesgo. Ph.D. Thesis, Instituto Potosino de Investigación Científica y Tecnológica A.C.
[6]
Broadus, R. N. (1987). Early Approaches to Bibliometrics. Journal of the American Society for Information Science, 38, 127-129. https://doi.org/10.1002/(SICI)1097-4571(198703)38:2<127::AID-ASI6>3.0.CO;2-K
[7]
Cadena-Zamudio, D. A., Flores-Garnica, J. G., Flores Rodríguez, A. G., & Lomelí-Zavala, M. E. (2020). Effect of Fires on Understory Vegetation and Chemical Properties of Temperate Forest Soil. Agroproductividad, 13, 65-72. https://doi.org/10.32854/agrop.vi.1684
[8]
Cadena-Zamudio, D., Ruiz-Guerra, B., Castillo, M. L., Flores-Garnica, J. G., & Guevara, R. (2022). Prevalence of Stochastic Processes in the Fire-Mediated Reassemble of the Soil Arthropod Community of a Pine Forest. Acta Oecologica, 115, Article ID: 103834. https://doi.org/10.1016/j.actao.2022.103834
[9]
Certini, G. (2005). Effects of Fire on Properties of Forest Soils: A Review. Oecologia, 143, 1-10. https://doi.org/10.1007/s00442-004-1788-8
[10]
Certini, G., Moya, D., Lucas-Borja, M. E., & Mastrolonardo, G. (2021). The Impact of Fire on Soil-Dwelling Biota: A Review. Forest Ecology and Management, 488, Article ID: 118989. https://doi.org/10.1016/j.foreco.2021.118989
[11]
Challenger, A., & Dirzo, R. (2009). Factores de cambio y estado de la biodiversidad. In CONABIO (Ed.), Capital Natural de México. Estado de conservación y tendencias de cambio (vol. II, pp. 37-73). Comisión Nacional para el Conocimiento y Uso de la Biodiversidad.
[12]
Chuvieco, E., Mouillot, F., Van der Werf, G. R., San Miguel, J., Tanase, M., Koutsias, N. et al. (2019). Historical Background and Current Developments for Mapping Burned Area from Satellite Earth Observation. Remote Sensing of Environment, 225, 45-64. https://doi.org/10.1016/j.rse.2019.02.013
[13]
Clarke, P. J., Lawes, M. J., Murphy, B. P., Russell-Smith, J., Nano, C. E., Bradstock, R. et al. (2015). A Synthesis of Postfire Recovery Traits of Woody Plants in Australian Ecosystems. Science of the Total Environment, 534, 31-42. https://doi.org/10.1016/j.scitotenv.2015.04.002
[14]
CONAFOR (Comisión Nacional Forestal) (2022). Reporte semanal de incendios forestales. URL. https://www.gob.mx/conafor/documentos/reporte-semanal-de-incendios
[15]
Cruz-Espíndola, M. á., Rodríguez-Trejo, D. A., Villanueva-Morales, A., & Santillán-Pérez, J. (2017). Factores sociales de uso del suelo y vegetación asociados a los incendios forestales en Hidalgo. Revista Mexicana de Ciencias Forestales, 8, 139-163. https://doi.org/10.29298/rmcf.v8i41.29
[16]
Cruz-López, M. I., Manzo-Delgado, L. D. L., Aguirre-Gómez, R., Chuvieco, E., & Equihua-Benítez, J. A. (2019). Spatial Distribution of Forest Fire Emissions: A Case Study in Three Mexican Ecoregions. Remote Sensing, 11, Article No. 1185. https://doi.org/10.3390/rs11101185
[17]
Cui, W., & Perera, A. H. (2008). What Do We Know about Forest Fire Size Distribution, and Why Is This Knowledge Useful for Forest Management? International Journal of Wildland Fire, 17, 234-244. https://doi.org/10.1071/WF06145
[18]
Di Virgilio, G., Evans, J. P., Blake, S. A., Armstrong, M., Dowdy, A. J., Sharples, J., & McRae, R. (2019). Climate Change Increases the Potential for Extreme Wildfires. Geophysical Research Letters, 46, 8517-8526. https://doi.org/10.1029/2019GL083699
[19]
Doerr, S. H., & Santín, C. (2016). Global Trends in Wildfire and Its Impacts: Perceptions versus Realities in a Changing World. Philosophical Transactions of the Royal Society B: Biological Sciences, 371, Article ID: 20150345. https://doi.org/10.1098/rstb.2015.0345
[20]
Domínguez, R. M., & Rodriguez-Trejo, D. A. (2008). Forest Fires in Mexico and Central América. In Proceedings of the Second International Symposium on Fire Economics, Planning, and Policy: A Global View (pp. 19-22).
[21]
Dong, X., Li, F., Lin, Z., Harrison, S. P., Chen, Y., & Kug, J. S. (2021). Climate Influence on the 2019 Fires in Amazonia. Science of the Total Environment, 794, Article ID: 148718. https://doi.org/10.1016/j.scitotenv.2021.148718
[22]
Erickson, H. E., & White, R. (2008). Soils under Fire: Soils Research and the Joint Fire Science Program (Vol. 759). US Department of Agriculture, Forest Service, Pacific Northwest Research Station. https://doi.org/10.2737/PNW-GTR-759
[23]
Fidelis, A. (2020). Is Fire Always the “Bad Guy”? Flora, 268, Article ID: 151611. https://doi.org/10.1016/j.flora.2020.151611
[24]
Flores Rodríguez, A. G., Flores Garnica, J. G., González Eguiarte, D. R., Gallegos Rodríguez, A., Zarazúa Villaseñor, P., Mena Munguía, S., Lomelí Zavala, M. E., & Ruíz Guzmán, E. (2021). Regeneración natural de pino y encino bajo diferentes niveles de perturbación por incendios forestales. Revista Mexicana de Ciencias Forestales, 12, 3-25. https://doi.org/10.29298/rmcf.v12i65.776
[25]
Flores-Garnica, J. G. (2009). Impacto ambiental de incendios forestales. 1era edición, Instituto Nacional de Investigaciones Forestales y Agropecuarias. Mundi Prensa S. A de C.V. México, D.F. 326 p.
[26]
Flores-Garnica, J. G. (2021). Antecedentes y perspectivas de la investigación en incendios forestales en el INIFAP. Revista Mexicana de Ciencias Forestales, 12, 91-119. https://doi.org/10.29298/rmcf.v12iEspecial-1.981
[27]
Flores-Garnica, J. G., & Omi, P. (2003). Mapping Forest Fuels for Spatial Fire Behavior Simulations Using Geomatic Strategies. Agrociencia, 37, 65-72. https://www.redalyc.org/pdf/302/30237107.pdf
[28]
Geary, W. L., Doherty, T. S., Nimmo, D. G., Tulloch, A. I., & Ritchie, E. G. (2020). Predator Responses to Fire: A Global Systematic Review and Meta-Analysis. Journal of Animal Ecology, 89, 955-971. https://doi.org/10.1111/1365-2656.13153
[29]
Gen-Suo, J. I. A. (2020). New Understanding of Land-Climate Interactions from IPCC Special Report on Climate Change and Land. Climate Change Research, 16, 9-16. https://doi.org/10.12006/j.issn.1673-1719.2019.216
[30]
Girona-García, A., Vieira, D. C., Silva, J., Fernández, C., Robichaud, P. R., & Keizer, J. J. (2021). Effectiveness of Post-Fire Soil Erosion Mitigation Treatments: A Systematic Review and Meta-Analysis. Earth-Science Reviews, 217, Article ID: 103611. https://doi.org/10.1016/j.earscirev.2021.103611
[31]
He, T., Lamont, B. B., & Pausas, J. G. (2019). Fire as a Key Driver of Earth’s Biodiversity. Biological Reviews, 94, 1983-2010. https://doi.org/10.1111/brv.12544
[32]
Hradsky, B. A., Mildwaters, C., Ritchie, E. G., Christie, F., & Di Stefano, J. (2017). Responses of Invasive Predators and Native Prey to a Prescribed Forest Fire. Journal of Mammalogy, 98, 835-847. https://doi.org/10.1093/jmammal/gyx010
[33]
Irannezhad, M., Liu, J., Ahmadi, B., & Chen, D. (2020). The Dangers of Arctic Zombie Wildfires. Science, 369, 1171. https://doi.org/10.1126/science.abe1739
[34]
Jardel-Pelaez, E. J., Alvarado-Celestino, E., Morfín-Ríos, J. E., Castillo-Navarro, F., & Flores-Garnica, J. G. (2009). Regímenes de fuego en ecosistemas forestales de México. Impacto ambiental de incendios forestales, 1, 73-100.
[35]
Jiménez, A. R. E., & Mendoza, L. G. (2019). Incendios forestales y el fenómeno de sequía: el caso de San Luis Potosí, México. Revista de Investigación en Geografía, No. 1, 13-24. https://doi.org/10.22201/ffyl.26832275e.2019.1.381
[36]
Jones, M. W., Smith, A., Betts, R., Canadell, J. G., Prentice, I. C., & Le Quere, C. (2020). Climate Change Increases the Risk of Wildfires. ScienceBrief Review. https://sciencebrief.org/briefs/wildfires
[37]
Juárez-Orozco, S. M., Siebe, C., & Fernández y Fernández, D. (2017). Causes and Effects of Forest Fires in Tropical Rainforests: A Bibliometric Approach. Tropical Conservation Science, 10, Article ID: 1940082917737207. https://doi.org/10.1177/1940082917737207
[38]
Koltz, A. M., Burkle, L. A., Pressler, Y., Dell, J. E., Vidal, M. C., Richards, L. A., & Murphy, S. M. (2018). Global Change and the Importance of Fire for the Ecology and Evolution of Insects. Current Opinion in Insect Science, 29, 110-116. https://doi.org/10.1016/j.cois.2018.07.015
[39]
Li, S., & Banerjee, T. (2021). Spatial and Temporal Pattern of Wildfires in California from 2000 to 2019. Scientific Reports, 11, Article No. 8779. https://doi.org/10.1038/s41598-021-88131-9
[40]
Mataix-Solera, J., Cerdà, A., Arcenegui, V., Jordán, A., & Zavala, L. M. (2011). Fire Effects on Soil Aggregation: A Review. Earth-Science Reviews, 109, 44-60. https://doi.org/10.1016/j.earscirev.2011.08.002
[41]
Pausas, J. G., & Keeley, J. E. (2009). A Burning Story: The Role of Fire in the History of Life. BioScience, 59, 593-601. https://doi.org/10.1525/bio.2009.59.7.10
[42]
Pausas, J. G., & Parr, C. L. (2018). Towards an Understanding of the Evolutionary Role of Fire in Animals. Evolution Ecology, 32, 113-125. https://doi.org/10.1007/s10682-018-9927-6
[43]
Pompa-García, M., & Sensibaugh, M. (2014). Forest Fires Occurrences and Their Teleconection with ENSO Phenomena. CienciaUAT, 8, 6-10. https://www.scielo.org.mx/pdf/cuat/v8n2/2007-7858-cuat-8-02-00006.pdf
[44]
Pressler, Y., Moore, J. C., & Cotrufo, M. F. (2019). Belowground Community Responses to Fire: Meta-Analysis Reveals Contrasting Responses of Soil Microorganisms and Mesofauna. Oikos, 128, 309-327. https://doi.org/10.1111/oik.05738
[45]
R Core Team (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.
[46]
Randrianarison, A., Schlaepfer, R., Mills, R., Hervé, D., Razanaka, S., Rakotoarimanana, V., & Buttler, A. (2015). Linking Historical Land Use to Present Vegetation and Soil Characteristics under Slash-and-Burn Cultivation in Madagascar. Applied Vegetation Science, 19, 40-52. https://doi.org/10.1111/avsc.12202
[47]
Rebecca, L., & Luann, D. (2021). Climate Change: Global Temperature. NOAA, National Centers for Environmental Information.
[48]
Robinne, F. N., Burns, J., Kant, P., Flannigan, M., Kleine, M., de Groot, B., & Wotton, D. M. (2018). Global Fire Challenges in a Warming World. IUFRO.
[49]
Rodríguez-Trejo, D. A., & Myers, R. L. (2010). Using Oak Characteristics to Guide Fire Regime Restoration in Mexican Pine-Oak and Oak Forests. Ecological Restoration, 28, 304-323. http://www.jstor.org/stable/43443263
[50]
Rodríguez-Trejo, D. A., Martínez-Hernández, P. A., Ortiz-Contla, H., Chavarría-Sánchez, M. R., & Hernández-Santiago, F. (2011). The Present Status of Fire Ecology, Traditional Use of Fire, and Fire Management in Mexico and Central America. Fire Ecology, 7, 40-56. https://doi.org/10.4996/fireecology.0701040
[51]
Rodríguez-Trejo, T. D. A., & Fulé, P. Z. (2003). Fire Ecology of Mexican Pines and a Fire Management Proposal. International Journal of Wildland Fire, 12, 23-37. https://www.uv.mx/personal/tcarmona/files/2010/08/Rodriguez-y-Fule-2003.pdf
[52]
Santos, S. M. B. D., Bento-Gonçalves, A., & Vieira, A. (2021). Research on Wildfires and Remote Sensing in the Last Three Decades: A Bibliometric Analysis. Forests, 12, Article No. 604. https://doi.org/10.3390/f12050604
[53]
Schoenberg, F.P., Peng, R., & Woods, J. (2003). On the Distribution of Wildfire Sizes. Environmetrics, 14, 583-592. https://doi.org/10.1002/env.605
[54]
Scholten, R. C., Jandt, R., Miller, E. A., Rogers, B. M., & Veraverbeke, S. (2021). Over-wintering Fires in Boreal Forests. Nature, 593, 399-404. https://doi.org/10.1038/s41586-021-03437-y
[55]
Scott, A. C. (2018). Burning Planet: The Story of Fire through Time. Oxford University Press. https://doi.org/10.1093/oso/9780198734840.001.0001
[56]
SEMARNAT (Secretaria de Medio Ambiente y Recursos Naturales) (2022a). Incendios Forestales. https://gisviewer.semarnat.gob.mx/bol/07_2104/
[57]
SEMARNAT (Secretaria de Medio Ambiente y Recursos Naturales) (2022b). Incendios Forestales. http://dgeiawf.semarnat.gob.mx:8080/ibi_apps/WFServlet?IBIF_ex=D3_RFORESTA05_01&IBIC_user=dgeia_mce&IBIC_pass=dgeia_mce&NOMBREENTIDAD=*&NOMBREANIO=*
[58]
Vasconcelos, R. N., Lima, A. T. C., Lentini, C. A., Miranda, G. V., Mendonça, L. F., Silva, M. A. et al. (2020). Oil Spill Detection and Mapping: A 50-Year Bibliometric Analysis. Remote Sensing, 12, Article No. 3647. https://doi.org/10.3390/rs12213647
[59]
Williams, R. J., Gill, A. M., & Bradstock, R. A. (2012). Flammable Australia: Fire Regimes, Biodiversity and Ecosystems in a Changing World. CSIRO Publishing.
[60]
Zhang, X., Estoque, R. C., Xie, H., Murayama, Y., & Ranagalage, M. (2019). Bibliometric Analysis of Highly Cited Articles on Ecosystem Services. PLOS ONE, 14, e0210707. https://doi.org/10.1371/journal.pone.0210707