|
基于AP RSSI特征向量相似度匹配的多尺度Wi-Fi定位方法
|
Abstract:
随着Wi-Fi和智能手机的愈发普及,基于Wi-Fi来进行定位是最近越来越受关注的一个研究领域。现有针对Wi-Fi定位所开展的研究工作本质上都是一种静态的方法。针对这一问题,提出一种基于AP RSSI特征向量相似度匹配的多尺度Wi-Fi定位方法,设计了一种面向目标地点的可探知AP接收信号强度指示符(RSSI)特征向量生成机制,重点研究了相似度度量和距离度量这两个指标,并依托这两个指标实现了一种AP RSSI特征向量之间相似度匹配算法,根据相似度匹配结果提供如楼宇级、楼层级、房间级等多尺度定位。基于Android环境开展实验,实验结果表明该方法在多种尺度下均能达到96%以上的定位正确率,能够提供准确、高效及低成本的定位服务。
Recently, Wi-Fi-based localization has gained increasing attention due to the popularity of Wi-Fi and smartphones. In terms of Wi-Fi localization, existing research is essentially static. To address this problem, a multi-scale Wi-Fi localization method based on AP RSSI feature vector similarity matching is proposed. It is designed to generate probable AP Received Signal Strength Indicator (RSSI) feature vectors based on two metrics, similarity metric and distance metric, and to implement a similarity matching algorithm between RSSI feature vectors based on these two metrics, and then to provide multi-scale localization services at the building, floor, and room levels based on similarity matching results. Experiments on the Android environment demonstrate that the localization method is capable of achieving more than 96% accuracy at different scales and is efficient, low-cost, and precise.
[1] | Kolodziej, K.W. and Hjelm, J. (2017) Local Positioning Systems: LBS Applications and Services. CRC Press, Boca Raton. https://doi.org/10.1201/9781420005004 |
[2] | 潘琢金, 郑玮, 杨华. 一种改进的WiFi指纹定位算法[J]. 沈阳航空航天大学学报, 2021, 38(5): 66-72. |
[3] | 曹斌, 董慧颖, 杨悦平. 多边算法在无线传感器网络目标定位中的应用[J]. 沈阳理工大学学报, 2008(1): 14-17. |
[4] | Feng, Y., Chang, C.K. and Ming, H. (2017) Recognizing Activities of Daily Living to Improve Well-Being. IT Professional, 19, 31-37. https://doi.org/10.1109/MITP.2017.51 |
[5] | Bisio, I., Delfino, A., Lavagetto, F., et al. (2017) Enabling IoT for In-Home Rehabilitation: Accelerometer Signals Classification Methods for Activity and Movement Recognition. IEEE Internet of Things Journal, 4, 135-146.
https://doi.org/10.1109/JIOT.2016.2628938 |
[6] | Kamilaris, A. and Pitsillides, A. (2016) Mobile Phone Computing and the Internet of Things: A Survey. IEEE Internet of Things Journal, 3, 885-898. https://doi.org/10.1109/JIOT.2016.2600569 |
[7] | 胡钊政, 刘佳蕙, 黄刚, 等. 融合WiFi激光雷达与地图的机器人室内定位[J]. 电子与信息学报, 2021, 43(8): 2308-2316. |
[8] | 俞佳豪, 余敏. 一种基于智能手机四向RSS指纹的室内定位方法[J]. 全球定位系统, 2021, 46(5): 48-54. |
[9] | 黄刚, 胡钊政, 蔡浩, 等. 基于Wi-Vi指纹的智能手机室内定位方法[J]. 自动化学报, 2020, 46(2): 320-331. |
[10] | 陈晓玉, 张新有, 张紫嫣. WiFi定位技术在地下停车场管理系统中的应用[J]. 成都信息工程大学学报, 2019, 34(3): 251-256. |
[11] | 徐洋, 孙建忠, 黄磊, 等. 基于WiFi定位的区域人群轨迹模型[J]. 山东大学学报: 理学版, 2019, 54(5): 8-20. |
[12] | 罗日, 李燕君, 金志昂, 等. 融合WiFi与可穿戴惯导模块的室内定位方法[J]. 仪器仪表学报, 2022, 43(3): 267-276. |
[13] | Chintalapudi, K., Padmanabha, I.A. and Padmanabhan, V.N. (2010) Indoor Localization without the Pain. In: Proceedings of the Sixteenth Annual International Conference on Mobile Computing and Networking, ACM, Chicago, 173-184. https://doi.org/10.1145/1859995.1860016 |
[14] | Vasisht, D., Kumar, S. and Katabi, D. (2016) Decimeter-Level Localization with a Single WiFi Access Point. In: Proceedings of the 13th Usenix Conference on Networked Systems Design and Implementation, USENIX, Santa Clara, 165-178. |
[15] | Wu, J., Feng, Y. and Sun, P. (2018) Sensor Fusion for Recognition of Activities of Daily Living. Sensors, 18, 4029.
https://doi.org/10.3390/s18114029 |