|
从依测度收敛到几乎处处收敛的教学设计探讨
|
Abstract:
结合教育部对师范专业认证的指标,以及多年从事实变函数的课堂教学经验,本文主要探讨对mE=∞和mE=∞时的依测度收敛的可测函数列,如何逐步引导学生添加合适的条件得到几乎处处收敛。通过此研究有助于引导师范生如何深挖教材,如何通过串联间知识点间的联系设计来试题,从而达到培养师范生教学技能。
Based on the standards of the Ministry of Education for Teacher Education Certification, and the teaching experience of many years in the classroom, this paper mainly discusses the measurable function series converging with the measure convergence when mE=∞ and mE=∞, how to guide students to add appropriate conditions to derive the almost everywhere convergence. Through this research, it is helpful to guide students of normal university how to dig deep into teaching materials, how to design test questions by connecting knowledge points in series, so as to train teaching skills of students of normal university.
[1] | 程其襄, 张奠宙, 胡善文, 薛以锋. 实变函数与泛函分析基础(第四版) [M]. 北京: 高等教育出版社, 2019. |
[2] | 张超, 陈泽泽. 实变理论中关于可测函数列几种相近的收敛性探析[J]. 甘肃高师学报, 2022, 27(5): 1-4. |
[3] | 崔颖. 关于“依测度收敛”概念教法的探究[J]. 宿州学院学报, 2015, 30(2): 122-124. |
[4] | 张超, 陈泽泽. 实变理论中关于可测函数列几种相近的收敛性探析[J]. 甘肃高师学报, 2022, 27(5): 1-4. |
[5] | 续小磊, 续晓欣. 几乎处处收敛、近一致收敛和依测度收敛之间的等价条件研究[J]. 长江大学学报(自然科学版), 2011, 8(10): 10-11, 15. |