全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于U-Net++神经网络模型的细胞计数方法研究
Cell Counting Method Based on U-Net++ Neural Network Model

DOI: 10.12677/SEA.2023.121017, PP. 163-173

Keywords: 细胞计数,神经网络,U-Net++
Cell Counting
, Neural Network, U-Net++

Full-Text   Cite this paper   Add to My Lib

Abstract:

细胞计数是医学图像研究中一个重要的科学问题,精准的细胞计数能够检测潜在疾病与相关病变。针对现有计数方法中准确率不高和效率低的问题,本文提出了基于U-Net++神经网络模型的细胞计数方法。首先对图片进行增强与锐化处理,进而分割图片和提取其高维特征,构建基于U-Net++神经网络模型进行训练与分类,最终实现细胞计数。实验结果表明,本文提出的计数方法准确率可达到97.4%,改进后的U-Net++神经网络模型提供了一种端到端的细胞计数方法,通用性较强,更加符合实际需求。
Cell count is an important scientific problem in medical image research. Accurate cell count can detect potential diseases and related lesions. Aiming at the problems of low accuracy and low efficiency in existing counting methods, this paper proposes a cell counting method based on U-net++ neural network model. Firstly, the image is enhanced and sharpened, then the image is segmtioned and its high-dimensional features are extracted, and the U-net++ neural network model is constructed for training and classification, and finally the cell count is realized. Experimental results show that the accuracy of the proposed counting method can reach 97.4%, and the improved U-net++ neural network model provides an end-to-end cell counting method, which has strong universality and is more in line with the actual needs.

References

[1]  朱会平, 陈志远. 基于细胞显微图像的数量统计应用[J]. 实验室科学, 2011, 14(5): 73-75.
[2]  李子柔, 王健庆, 陈景森, 戴恺, 陈怡汝, 吕宇琛. 基于计算机视觉的细胞显微图像研究[J]. 福建电脑, 2017, 33(12): 104-106.
https://doi.org/10.16707/j.cnki.fjpc.2017.12.053
[3]  潘佚, 吴思宇, 邱蕾. 基于数学形态学的红细胞计数算法[J]. 南华大学学报(自然科学版), 2017, 31(2): 51-55.
https://doi.org/10.19431/j.cnki.1673-0062.2017.02.011
[4]  Tian, T., et al. (2021) Class-Wise Fully Convolutional Network for Semantic Segmentation of Remote Sensing Images. Remote Sensing, 13, 3211-3211.
https://doi.org/10.3390/rs13163211
[5]  Chan, S.X., et al. (2021) Res2-UNeXt: A Novel Deep Learning Framework for Few-Shot Cell Image Segmentation. Multimedia Tools and Applications, 81, 13275-13288.
https://doi.org/10.1007/s11042-021-10536-5
[6]  Gamarra, M., et al. (2021) MC-Kmeans: An Approach to Cell Image Segmentation Using Clustering Algorithms. International Journal of Artificial Intelligence, 19, 80-94.
[7]  Zhao, H.S., et al. (2016) Pyramid Scene Parsing Network. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 21-26 July 2017, 6230-6239.
https://doi.org/10.1109/CVPR.2017.660
[8]  沈剑火. 基于深度学习的细胞分割的算法研究[D]: [硕士学位论文]. 合肥: 安徽大学, 2020.
https://doi.org/10.26917/d.cnki.ganhu.2020.000645
[9]  刘晓平. 基于深度学习的荧光显微成像中细胞自动计数方法研究[D]: [硕士学位论文]. 成都: 电子科技大学, 2020.
https://doi.org/10.27005/d.cnki.gdzku.2020.000662
[10]  王祥生, 王伟. 基于清晰度的细胞显微图像分割和计数方法[J]. 中国医学影像学杂志, 2014, 22(10): 797-800.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133