|
基于残差模块的Retinex-Net网络的低照度图像增强算法
|
Abstract:
为解决低光照环境下图片可见度差以及色彩偏差等问题,提出一种基于Retinex-Net网络改进的低照图增强方法。将残差模块加入到分解网络当中,更好地提取图像信息,然后再进行增强、去噪和融合,最后输出增强后图像。经实验证明,本算法能够使增强后的图像亮度有所提高,凸显出细节信息,色彩不失真,更符合人眼的观察效果,从主观感受与客观评价指标各方面均优于原来的网络结构。
In order to solve the problems of poor visibility and color deviation in low light environment, a low light image enhancement method based on Retinex-Net network was proposed. The residual module is added to the decomposition network to better extract image information, and then enhance de-noising and fusion, and finally output the enhanced image. Experiments show that the enhanced low-illuminance image with enhanced brightness, prominent details and small distortion is real and natural, and the algorithm is superior to the original network structure in terms of subjective feeling and objective evaluation indexes.
[1] | 王延年, 杨恒升, 刘妍妍, 杨涛. 基于改进Retinex-Net的低照度图像增强算法[J]. 西安工程大学学报, 2022, 36(5): 79-86. https://doi.org/10.13338/j.issn.1674-649x.2022.05.011 |
[2] | 梁剑波, 柴群. 基于卷积神经网络的低照度图像增强方法[J]. 长江信息通信, 2022, 35(11): 26-28. |
[3] | 潘晓英, 魏苗, 王昊, 等. 多尺度融合残差编解码器的低照度图像增强方法[J]. 计算机辅助设计与图形学学报, 2022, 34(1): 104-122. |
[4] | 欧嘉敏, 胡晓, 杨佳信. 改进Retinex-Net的低光照图像增强算法[J]. 模式识别与人工智能, 2021, 34(1): 77-86. |
[5] | 王建中, 徐浩楠, 王洪枫, 等. 基于残差密集块和自编码网络的红外与可见光图像融合[J]. 北京理工大学学报, 2021, 41(10): 1077-1083. |
[6] | https://blog.csdn.net/qq_45470799/article/details/123716347 |