全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

微小RNA通过靶向PI3K/AKT信号通路改善2型糖尿病胰岛素抵抗的机制研究
Mechanism of microRNAs to Improve Insulin Resistance in Type 2 Diabetes by Targeting PI3K/AKT Signaling Pathway

DOI: 10.12677/ACM.2023.132261, PP. 1886-1892

Keywords: 2型糖尿病,胰岛素抵抗,微小RNA,PI3K/Akt信号通路
Type 2 Diabetes Mellitus
, Insulin Resistance, microRNAs, PI3K/Akt

Full-Text   Cite this paper   Add to My Lib

Abstract:

胰岛素抵抗(Insulin resistance, IR)是2型糖尿病(type 2 diabetes mellitus, T2DM)的主要发病机制,IR产生机制尤为复杂,胰岛素信号通路的转导在其中扮演着重要角色。近年来,越来越多有关微小RNA (miRNA)的研究证实,miRNA是糖脂代谢的关键调节因子,可能与其调控信号通路有关。而PI3K/Akt在胰岛素信号通路中居于主导地位,因此,探索miRNA与PI3K/Akt信号通路之间的调控关系,明确其作用靶点及调控方向,有利于为T2DM提供新的治疗方向,miRNA有望成为T2DM的诊断和治疗新靶点。
Insulin resistance (IR) is the main pathogenesis of type 2 diabetes mellitus (T2DM), and the gener-ation mechanism of IR is particularly complex, in which insulin signaling pathway transduction plays an important role. In recent years, more and more studies on MicroRNAs (miRNAs) have con-firmed that miRNAs are key regulatory factors in glycolipid metabolism and may be related to their regulatory signaling pathways. PI3K/Akt plays a dominant role in insulin signaling pathway. Therefore, exploring the regulatory relationship between miRNA and PI3K/Akt signaling pathway as well as clarifying its target and direction of regulation is conducive to providing new therapeutic directions for T2DM, and miRNA is expected to become a new target for diagnosis and treatment of T2DM.

References

[1]  Li, Y.Z., Teng, D., Shi, X.G., et al. (2020) Prevalence of Diabetes Recorded in Mainland China Using 2018 Diagnostic Criteria from the American Diabetes Association: National Cross Sectional Study. BMJ, 369, Article No. m997.
https://doi.org/10.1136/bmj.m997
[2]  Saeedi, P., Petersohn, I., Salpea, P., et al. (2019) Global and Regional Dia-betes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results from the International Diabetes Federa-tion Diabetes Atlas, 9th Edition. Diabetes Research and Clinical Practice, 157, Article ID: 107843.
https://doi.org/10.1016/j.diabres.2019.107843
[3]  Sinclair, A., Saeedi, P., Kaundal, A., et al. (2020) Diabetes and Global Ageing among 65-99-Year-Old Adults: Findings from the International Diabetes Federation Diabetes Atlas, 9th Edition. Diabetes Research and Clinical Practice, 162, Article ID: 108078.
https://doi.org/10.1016/j.diabres.2020.108078
[4]  Beale, E.G. (2013) Insulin Signaling and insulin Resistance. Journal of Investigative Medicine, 61, 11-14.
https://doi.org/10.2310/JIM.0b013e3182746f95
[5]  Saltiel, A.R. (2001) New Perspectives into the Molecular Pathogenesis and Treatment of Type 2 Diabetes. Cell, 104, 517-529.
https://doi.org/10.1016/S0092-8674(01)00239-2
[6]  唐菁婕. 基于miR-320的PI3K/AKT/GLUT4通路探讨苍附导痰汤加味联合二甲双胍对治疗肾虚痰湿型PCOS-IR的妊娠结局影响[D]: [硕士学位论文]. 济南: 山东中医药大学, 2021.
https://doi.org/10.27282/d.cnki.gsdzu.2021.000227
https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CMFD&dbname=CMFD202201&filename=1021136247.nh&v
[7]  刘福君, 常李李, 王为兰, 李金耀. 肝脏胰岛素抵抗与2型糖尿病[J]. 中国医学科学院学报, 2022, 44(4): 699-708.
[8]  赵珊珊, 韩亚鹏, 潘紫萌, 等. 基于PI3K/Akt信号通路探究中医药治疗胰岛素抵抗型多囊卵巢综合征的研究进展[J]. 辽宁中医杂志, 2022, 49(11): 211-216.
[9]  曾霖, 黄倩, 王高祥, 等. 微RNA调控糖代谢的研究进展[J]. 医学综述, 2022, 28(13): 2655-2660.
[10]  迟毓婧, 李晶, 管又飞, 杨吉春. PI3K-Akt信号传导通路对糖代谢的调控作用[J]. 中国生物化学与分子生物学报, 2010, 26(10): 879-885.
https://doi.org/10.13865/j.cnki.cjbmb.2010.10.014
[11]  Hu, M.L., Zhu, S.X., Xiong, S.W., Xue, X.X. and Zhou, X.D. (2019) MicroRNAs and the PTEN/PI3k/AKT Pathway in Gastric Cancer (Review). Oncology Reports, 41, 1439-1454.
https://doi.org/10.3892/or.2019.6962
[12]  Chen, P.F., Li, X.P., Yu, X. and Yang, M. (2022) Ginseno-side Rg1 Suppresses Non-Small-Cell Lung Cancer via MicroRNA-126-PI3K-AKT-mTOR Pathway. Evidence-Based Complementary and Alternative Medicine, 2022, Article ID: 1244836.
https://doi.org/10.1155/2022/1244836
[13]  Dihingia, A., Ozah, D., Ghosh, S., et al. (2018) Vitamin K1 Inversely Correlates with Glycemia and Insulin Resistance in Patients with Type 2 Diabetes (T2D) and Positively Regulates SIRT1/AMPK Pathway of Glucose Metabolism in Liver of T2D Mice and Hepatocytes Cultured in High Glucose. The Journal of Nutritional Biochemistry, 52, 103-114.
https://doi.org/10.1016/j.jnutbio.2017.09.022
[14]  Williams, M.D. and Mitchell, G.M. (2012) MicroRNAs in Insu-lin Resistance and Obesity. Experimental Diabetes Research, 2012, Article ID: 484696.
https://doi.org/10.1155/2012/484696
[15]  Sano, H., Eguez, L., Teruel, M.N., et al. (2007) Rab10, a Target of the AS160 RAB GAP, Is Required for Insulin-Stimulated Translocation of GLUT4 to the Adipocyte Plasma Membrane. Cell Metabolism, 5, 293-303.
https://doi.org/10.1016/j.cmet.2007.03.001
[16]  Zhang, X., Xue, X.-C., Wang, Y., et al. (2019) Celastrol Reverses Palmitic Acid-Induced Insulin Resistance in HepG2 Cells via Restoring the miR-223 and GLUT4 Pathway. Canadian Journal of Diabetes, 43, 165-172.
https://doi.org/10.1016/j.jcjd.2018.07.002
[17]  张世卿, 佟丽. 胰岛素抵抗作用发生机制及实验模型的研究进展[J]. 中药新药与临床药理, 2012, 23(3): 364-368.
[18]  高静, 段畅, 李丽娟. 2型糖尿病发病机制的研究进展[J]. 医学综述, 2015, 21(21): 3935-3938.
[19]  Zhang, Z.Q., Zhang, J.K., Li, J.M., et al. (2020) miR-320/ELF3 Axis Inhibits the Progression of Breast Cancer via the PI3K/AKT Pathway. Oncology Letters, 19, 3239-3248.
https://doi.org/10.3892/ol.2020.11440
[20]  胡淑芳, 杨丽, 蔡桃英, 徐子辉. miR-320a-5p对高脂饮食诱导的小鼠肥胖和IR的影响研究[J]. 重庆医学, 2020, 49(16): 2605-2611+2616.
[21]  Du, H.Z., Zhao, Y.R., Yin, Z.W., et al. (2021) The Role of miR-320 in Glucose and Lipid Metabolism Disorder-Associated Diseases. International Journal of Biological Sciences, 17, 402-416.
https://doi.org/10.7150/ijbs.53419
[22]  刘云涛, 何婷, 胡妍琦, 等. 2型糖尿病患者血清miR-320与颈动脉粥样硬化相关性的研究[J]. 中国糖尿病杂志, 2022, 30(4): 256-260.
[23]  Yu, Y., Du, H.W., Wei, S.N., et al. (2018) Adipocyte-Derived Exosomal MIR-27a Induces Insulin Resistance in Skeletal Muscle through Repression of PPARγ. Theranostics, 8, 2171-2188.
https://doi.org/10.7150/thno.22565
[24]  Wang, Y., Yang, L.-Z., Yang, D.-G., et al. (2020) MiR-21 Antagomir Improves Insulin Resistance and Lipid Metabolism Disorder in Streptozotocin-Induced Type 2 Diabetes Mellitus Rats. Annals of Palliative Medicine, 9, 394-404.
https://doi.org/10.21037/apm.2020.02.28
[25]  Mao, Z.-J., Weng, S.-Y., Lin, M. and Chai, K.-F. (2019) Yunpi Heluo Decoction Attenuates Insulin Resistance by Regulating Liver miR-29a-3p in Zucker Diabetic Fatty Rats. Journal of Ethnopharmacology, 243, Article ID: 111966.
https://doi.org/10.1016/j.jep.2019.111966
[26]  张超伟. 大黄黄连泻心汤通过调控PI3K/AKT信号通路改善T2DM模型大鼠的研究[D]: [硕士学位论文]. 呼和浩特: 内蒙古医科大学, 2021.
https://doi.org/10.27231/d.cnki.gnmyc.2021.000229
https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CMFD&dbname=CMFD202201&filename=1021813780.nh&v
[27]  郝艺杰. 大黄黄连泻心汤调控PI3K/AKT信号通路改善HepG2细胞糖脂代谢和胰岛素抵抗的研究[D]: [硕士学位论文]. 呼和浩特: 内蒙古医科大学, 2021.
https://doi.org/10.27231/d.cnki.gnmyc.2021.000073
https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CMFD&dbname=CMFD202201&filename=1021813790.nh&v
[28]  郝建华, 包毅敏, 包芸, 等. 大黄黄连泻心汤对2型糖尿病大鼠骨骼肌中AMPKα、PGC-1α、GLUT4表达的影响[J]. 中国医药导报, 2019, 16(33): 13-18.
[29]  Yu, X., Tao, W.W., Jiang, F.R., et al. (2010) Celastrol At-tenuates Hypertension-Induced Inflammation and Oxidative Stress in Vascular Smooth Muscle Cells via Induction of Heme Oxygenase-1. American Journal of Hypertension, 23, 895-903.
https://doi.org/10.1038/ajh.2010.75
[30]  Kim, J.E., Lee, M.H., Nam, D.H., et al. (2013) Celastrol, an Nf-κB Inhib-itor, Improves Insulin Resistance and Attenuates Renal Injury in db/db Mice. PLOS ONE, 8, e62068.
https://doi.org/10.1371/journal.pone.0062068
[31]  Dai, B., Wu, Q.X., Zeng, C.X., et al. (2016) The Effect of Liuwei Dihuang Decoction on PI3K/AKT Signaling Pathway in Liver of Type 2 Diabetes Mellitus (T2DM) Rats with Insulin Resistance. Journal of Ethnopharmacology, 192, 382-389.
https://doi.org/10.1016/j.jep.2016.07.024
[32]  余臣祖, 张朝宁, 张小娟, 安小平. 化浊颗粒对2型糖尿病大鼠肝组织微小RNA-21/PTEN/PI3K/AKT信号通路的调控作用[J]. 世界中西医结合杂志, 2022, 17(4): 721-724.
https://doi.org/10.13935/j.cnki.sjzx.220414
[33]  Liu, Y., Gao, G.Q., Yang, C., et al. (2014) The Role of Circulat-ing Microrna-126 (miR-126): A Novel Biomarker for Screening Prediabetes and Newly Diagnosed Type 2 Diabetes Mellitus. International Journal of Molecular Sciences, 15, 10567-10577.
https://doi.org/10.3390/ijms150610567
[34]  Al-Kafaji, G., Al-Mahroos, G., Alsayed, N.A., et al. (2015) Peripheral Blood microRNA-15a Is a Potential Biomarker for Type 2 Diabetes Mellitus and Pre-Diabetes. Molecular Medicine Re-ports, 12, 7485-7490.
https://doi.org/10.3892/mmr.2015.4416
[35]  孙志兵, 杨娟. 2型糖尿病患者血清miR-320表达与糖尿病视网膜病变的相关性研究[J]. 中国糖尿病杂志, 2021, 29(5): 344-348.
[36]  刘朱美卉, 陈晓宇, 杨元芳. 干扰微小RNA-320表达通过蛋白激酶B/哺乳动物雷帕霉素通路保护高糖诱导的胰岛β细胞损伤[J]. 安徽医药, 2021, 25(10): 2039-2043.
[37]  冯帅豪, 高社干, 陈晓杰, 等. miRNA-320d和FoxM1在贲门癌组织中表达相关性及临床价值分析[J]. 安徽医科大学学报, 2017, 52(2): 194-198.
https://doi.org/10.19405/j.cnki.issn1000-1492.2017.02.009
[38]  刘雪娇, 张雪云, 张勇. 基于miR-320/E2F转录因子1轴探讨天南星提取物对肺癌细胞顺铂耐药的影响及相关机制[J]. 实用心脑肺血管病杂志, 2022, 30(8): 19-23.
[39]  李蓉, 缪忠惠, 唐嘉黛, 等. MiR-320c靶向FADD基因抑制肺腺癌细胞凋亡促进癌细胞的迁移和侵袭[J]. 现代肿瘤医学, 2022, 30(9): 1531-1537.
[40]  周晓兰, 杨帆, 徐大春, 等. 心房颤动病人血浆外泌体miR-320d表达与心房纤维化程度及复发的关系[J]. 中西医结合心脑血管病杂志, 2022, 20(12): 2233-2236.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133