All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

高锂利用率锂金属负极及其在锂硫电池中的研究进展
Construction of Lithium Metal Anode with High Lithium Utilization and its Application in Lithium-Sulfur Batteries

DOI: 10.12677/NAT.2023.131002, PP. 7-28

Keywords: 锂金属电池,均匀锂沉积,锂硫电池,穿梭效应,高利用率
Lithium Metal Battery
, Uniform Lithium Deposition, Lithium-Sulfur Battery, Shuttle Effect, High Utilization

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着社会的进步与环保意识的提高,至2030年,众多老牌汽车厂商都会停止生产内燃机汽车。目前国内外的汽车市场无不对电动汽车或混合动力汽车加大研究投入,高比能量锂离子电池作为新时代汽车储能装置的关键组成部分,一直广受关注。目前锂离子电池负极材料如石墨、硅碳等已经广泛应用于锂离子电池中,但石墨负极低的储锂质量比容量(372 mA?h/g)和硅碳负极巨大的体积膨胀效应一直限制了它们的进一步发展。而正极材料如LiFePO4、LiMO2 (M = Ni、Co、Mn)等虽然也已经投入商用,但低储锂质量比容量(<300 mA?h/g)、安全性、倍率性能等问题也限制着它们的发展。被誉为下一代储能系统最有力候选者的锂硫电池是由有着质量比容量分别为3860 mA?h/g和1675 mA?h/g的锂金属负极和硫正极组成的。然而由于锂金属负极存在着枝晶生长的问题,并且硫正极产生的多硫化物会在电解液中溶解引起穿梭效应,这些都严重影响着锂金属电池锂的利用率及锂硫电池的硫利用率。本综述详细介绍了锂金属电池面临的问题以及锂硫电池目前的研究进展。
By 2030, with the progress of society and the improvement of environmental protection awareness, many established car manufacturers will stop producing internal combustion engine vehicles. At present, the domestic and foreign automotive markets have all increased their research investment in electric vehicles or hybrid vehicles. As a key component of the new era of automotive energy storage devices, high-specific energy lithium-ion batteries have received wide attention. At present, lithium ion battery anode materials such as graphite and silicon carbon have been widely used in lithium ion batteries, but the low lithium storage mass specific capacity (372 mA?h/g) of graphite anode and the huge volume expansion effect of silicon carbon anode have limited their further development. Although cathode materials such as LiFePO4 and LiMO2 (M = Ni, Co, Mn) have also been put into commercial use, the low lithium storage mass specific capacity (<300 mA?h/g), safety, rate performance and other issues still exist. The lithium-sulfur battery, known as the most powerful candidate for the next-generation energy storage system, is composed of a lithium metal anode with a specific capacity of 3860 mA?h/g and a sulfur cathode with a specific capacity of 1675 mA?h/g. However, the lithium metal anode has the problem of dendrite growth, and the polysulfide will dissolve in the electrolyte to cause a shuttle effect, which all seriously affects the effective utilization of lithium anode and sulfur cathode in lithium-sulfur batteries. This review details the problems faced by lithium metal batteries and the research progress of lithium-sulfur batteries.

References

[1]  Chen, S., Dai, F. and Cai, M. (2020) Opportunities and Challenges of High-Energy Lithium Metal Batteries for Electric Vehicle Applications. ACS Energy Letters, 5, 3140.
https://doi.org/10.1021/acsenergylett.0c01545
[2]  Cha, C. and Yang, H.X. (1993) Recent Advances in Experimental Methods Applied to Lithium Battery Researches. Journal of Power Sources, 43-44, 145.
https://doi.org/10.1016/0378-7753(93)80111-2
[3]  Andre, D., Hain, H., Lamp, P., Maglia, F. and Stiaszny, B. (2017) Future High-Energy Density Anode Materials from an Automotive Application Perspective. Journal of Materials Chemistry A, 5, 17174.
https://doi.org/10.1039/C7TA03108D
[4]  Schmuch, R., Wagner, R., H?rpel, G., Placke, T. and Winter, M. (2018) Performance and Cost of Materials for Lithium-Based Rechargeable Automotive Batteries. Nature Energy, 3, 267.
https://doi.org/10.1038/s41560-018-0107-2
[5]  Betz, J., Bieker, G., Meister, P., Placke, T., Winter, M. and Schmuch, R. (2019) Theoretical versus Practical Energy: A Plea for More Transparency in the Energy Calculation of Different Rechargeable Battery Systems. Advanced Energy Materials, 9, Article ID: 1803170.
https://doi.org/10.1002/aenm.201803170
[6]  Louli, A.J., Eldesoky, A., Weber, R., Genovese, M., Coon, M., deGooyer, J., Deng, Z., White, R.T., Lee, J., Rodgers, T., Petibon, R., Hy, S., Cheng, S.J.H. and Dahn, J.R. (2020) Diagnosing and Correcting Anode-Free Cell Failure via Electrolyte and Morphological Analysis. Nature Energy, 5, 693.
https://doi.org/10.1038/s41560-020-0668-8
[7]  Liu, J., Bao, Z., Cui, Y., Dufek, E.J., Goodenough, J.B., Khalifah, P., Li, Q., Liaw, B.Y., Liu, P., Manthiram, A., Meng, Y.S., Subramanian, V.R., Toney, M.F., Viswanathan, V.V., Whittingham, M.S., Xiao, J., Xu, W., Yang, J., Yang, X.-Q. and Zhang, J.-G. (2019) Pathways for Practical High-Energy Long-Cycling Lithium Metal Batteries. Nature Energy, 4, 180.
https://doi.org/10.1038/s41560-019-0338-x
[8]  Zhan, X., Bonnett, J.F., Engelhard, M.H., Reed, D.M., Sprenkle, V.L. and Li, G. (2020) A High-Performance Na-Al Battery Based on Reversible NaAlCl4 Catholyte. Advanced Energy Materials, 10, Article ID: 2001378.
https://doi.org/10.1002/aenm.202001378
[9]  Hagen, M., Hanselmann, D., Ahlbrecht, K., Ma?a, R., Gerber, D. and Tübke, J. (2015) Lithium-Sulfur Cells: The Gap between the State-of-the-Art and the Requirements for High Energy Battery Cells. Advanced Energy Materials, 5, Article ID: 1401986.
https://doi.org/10.1002/aenm.201401986
[10]  Cano, Z.P., Banham, D., Ye, S., Hintennach, A., Lu, J., Fowler, M. and Chen, Z. (2018) Batteries and Fuel Cells for Emerging Electric Vehicle Markets. Nature Energy, 3, 279.
https://doi.org/10.1038/s41560-018-0108-1
[11]  Chen, S., Niu, C., Lee, H., Li, Q., Yu, L., Xu, W., Zhang, J.-G., Dufek, E.J., Whittingham, M.S., Meng, S., Xiao, J. and Liu, J. (2019) Critical Parameters for Evaluating Coin Cells and Pouch Cells of Rechargeable Li-Metal Batteries. Joule, 3, 1094.
https://doi.org/10.1016/j.joule.2019.02.004
[12]  Zhu, K., Wang, C., Chi, Z., Ke, F., Yang, Y., Wang, A., Wang, W. and Miao, L. (2019) How Far Away Are Lithium-Sulfur Batteries from Commercialization? Frontiers in Energy Research, 7, 123.
https://doi.org/10.3389/fenrg.2019.00123
[13]  Jaguemont, J., Boulon, L. and Dubé, Y. (2016) A Comprehensive Review of Lithium-Ion Batteries Used in Hybrid and Electric Vehicles at Cold Temperatures. Applied Energy, 164, 99.
https://doi.org/10.1016/j.apenergy.2015.11.034
[14]  Raj, H., Rani, S. and Sil, A. (2018) Antisite Defects in Sol-Gel-Synthesized LiFePO4 at Higher Temperature: Effect on Lithium-Ion Diffusion. ChemElectroChem, 5, 3525.
https://doi.org/10.1002/celc.201800889
[15]  Ouyang, D., Chen, M., Huang, Q., Weng, J., Wang, Z. and Wang, J. (2019) A Review on the Thermal Hazards of the Lithium-Ion Battery and the Corresponding Countermeasures. Applied Sciences, 9, 2483.
https://doi.org/10.3390/app9122483
[16]  Huang, J., Qin, D. and Peng, Z. (2015) Effect of Energy-Regenerative Braking on Electric Vehicle Battery Thermal Management and Control Method Based on Simulation Investigation. Energy Conversion and Management, 105, 1157.
https://doi.org/10.1016/j.enconman.2015.08.080
[17]  Zhang, Y., Shang, Y., Cui, N. and Zhang, C. (2018) Parameters Identification and Sensitive Characteristics Analysis for Lithium-Ion Batteries of Electric Vehicles. Energies, 11, 19.
https://doi.org/10.3390/en11010019
[18]  Xu, K. (2004) Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chemical Reviews, 104, 4303.
https://doi.org/10.1021/cr030203g
[19]  Waldmann, T., Hogg, B.-I. and Wohlfahrt-Mehrens, M. (2018) Li Plating as Unwanted Side Reaction in Commercial Li-Ion Cells: A Review. Journal of Power Sources, 384, 107.
https://doi.org/10.1016/j.jpowsour.2018.02.063
[20]  Li, Z., Huang, J., Yann Liaw, B., Metzler, V. and Zhang, J. (2014) A Review of Lithium Deposition in Lithium-Ion and Lithium Metal Secondary Batteries. Journal of Power Sources, 254, 168.
https://doi.org/10.1016/j.jpowsour.2013.12.099
[21]  Akolkar, R. (2014) Modeling Dendrite Growth during Lithium Electrodeposition at Sub-Ambient Temperature. Journal of Power Sources, 246, 84.
https://doi.org/10.1016/j.jpowsour.2013.07.056
[22]  Gabrisch, H., Ozawa, Y. and Yazami, R. (2006) Crystal Structure Studies of Thermally Aged LiCoO2 and LiMn2O4 Cathodes. Electrochimica Acta, 52, 1499.
https://doi.org/10.1016/j.electacta.2006.02.050
[23]  Ecker, M., Nieto, N., K?bitz, S., Schmalstieg, J., Blanke, H., Warnecke, A. and Sauer, D.U. (2014) Calendar and Cycle Life Study of Li(NiMnCo)O2-Based 18650 Lithium-Ion Batteries. Journal of Power Sources, 248, 839.
https://doi.org/10.1016/j.jpowsour.2013.09.143
[24]  Handel, P., Fauler, G., Kapper, K., Schmuck, M., Stangl, C., Fischer, R., Uhlig, F. and Koller, S. (2014) Thermal Aging of Electrolytes Used in Lithium-Ion Batteries: An Investigation of the Impact of Protic Impurities and Different Housing Materials. Journal of Power Sources, 267, 255.
https://doi.org/10.1016/j.jpowsour.2014.05.080
[25]  Bodenes, L., Naturel, R., Martinez, H., Dedryvère, R., Menetrier, M., Croguennec, L., Pérès, J.-P., Tessier, C. and Fischer, F. (2013) Lithium Secondary Batteries Working at Very High Temperature: Capacity Fade and Understanding of Aging Mechanisms. Journal of Power Sources, 236, 265.
https://doi.org/10.1016/j.jpowsour.2013.02.067
[26]  Park, H.E., Hong, C.H. and Yoon, W.Y. (2008) The Effect of Internal Resistance on Dendritic Growth on Lithium Metal Electrodes in the Lithium Secondary Batteries. Journal of Power Sources, 178, 765.
https://doi.org/10.1016/j.jpowsour.2007.12.081
[27]  Mogi, R., Inaba, M., Abe, T. and Ogumi, Z. (2001) In Situ Atomic Force Microscopy Observation of Lithium Deposition at an Elevated Temperature. Journal of Power Sources, 97-98, 265.
https://doi.org/10.1016/S0378-7753(01)00511-0
[28]  Yan, K., Wang, J., Zhao, S., Zhou, D., Sun, B., Cui, Y. and Wang, G. (2019) Temperature-Dependent Nucleation and Growth of Dendrite-Free Lithium Metal Anodes. Angewandte Chemie International Edition, 58, 11364.
https://doi.org/10.1002/anie.201905251
[29]  Dolle, M., Sannier, L., Beaudion, B. and Trentin, M. (2002) Live Scanning Electron Microscope Observations of Dendritic Growth in Lithium-Polymer Cells. Electrochemical and Solid-State Letters, 5, A286-A289.
https://doi.org/10.1149/1.1519970
[30]  Crakawa, M., Tobishima, S., Nemoto, Y. and Ichimura, M. (1996) Lithium Electrode Cycleability and Morphology Dependence on Current Density. Journal of Power Sources, 43-44, 27.
https://doi.org/10.1016/0378-7753(93)80099-B
[31]  Chandrasekar, M.S. and Pushpavanam, M. (2008) Pulse and Pulse Reverse Plating-Conceptual, Advantages and Applications. Electrochimica Acta, 53, 3313.
https://doi.org/10.1016/j.electacta.2007.11.054
[32]  Lin, D., Liu, Y. and Cui, Y. (2017) Reviving the Lithium Metal Anode for High-Energy Batteries. Nature Nanotechnology, 12, 194.
https://doi.org/10.1038/nnano.2017.16
[33]  Niu, C., Lee, H., Chen, S., Li, Q., Du, J., Xu, W., Zhang, J.-G., Whittingham, M.S., Xiao, J. and Liu, J. (2019) High-Energy Lithium Metal Pouch Cells with Limited Anode Swelling and Long Stable Cycles. Nature Energy, 4, 551.
https://doi.org/10.1038/s41560-019-0390-6
[34]  Louli, A.J., Genovese, M., Weber, R., Hames, S.G., Logan, E.R. and Dahn, J.R. (2019) Exploring the Impact of Mechanical Pressure on the Performance of Anode-Free Lithium Metal Cells. Journal of the Electrochemical Society, 166, A1291-A1299.
https://doi.org/10.1149/2.0091908jes
[35]  Guida, P. and Vazquez, M.E. (2007) Cytotoxic and Cell Cycle Effects in Human Neuronal Progenitor Cells Exposed to 1GeV/n Fe Ions. Advances in Space Research, 39, 1004.
https://doi.org/10.1016/j.asr.2006.12.009
[36]  Feng, X., Ouyang, M., Liu, X., Lu, L., Xia, Y. and He, X. (2018) Thermal Runaway Mechanism of Lithium-Ion Battery for Electric Vehicles: A Review. Energy Storage Materials, 10, 246.
https://doi.org/10.1016/j.ensm.2017.05.013
[37]  Mohanty, D., Hockaday, E., Li, J., Hensley, D.K., Daniel, C. and Wood, D.L. (2016) Effect of Electrode Manufacturing Defects on Electrochemical Performance of Lithium-Ion Batteries: Cognizance of the Battery Failure Sources. Journal of Power Sources, 312, 70.
https://doi.org/10.1016/j.jpowsour.2016.02.007
[38]  Ruiz, V., Pfrang, A., Kriston, A., Omar, N., van den Bossche, P. and Boon-Brett, L. (2018) A Review of International Abuse Testing Standards and Regulations for Lithium-Ion Batteries in Electric and Hybrid Electric Vehicles. Renewable and Sustainable Energy Reviews, 81, 1427.
https://doi.org/10.1016/j.rser.2017.05.195
[39]  Zheng, J., Kim, M.S., Tu, Z., Choudhury, S., Tang, T. and Archer, L.A. (2020) Regulating Electrodeposition Morphology of Lithium: Towards Commercially Relevant Secondary Li Metal Batteries. Chemical Society Reviews, 49, 2701.
https://doi.org/10.1039/C9CS00883G
[40]  Cheng, X.-B., Zhang, R., Zhao, C.-Z. and Zhang, Q. (2017) Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chemical Reviews, 117, 10403.
https://doi.org/10.1021/acs.chemrev.7b00115
[41]  Li, S., Jiang, M., Xie, Y., Xu, H., Jia, J. and Li, J. (2018) Developing High-Performance Lithium Metal Anode in Liquid Electrolytes: Challenges and Progress. Advanced Materials, 30, e1706375.
https://doi.org/10.1002/adma.201706375
[42]  Brandt, K. (1994) Historical Development of Secondary Lithium Batteries. Solid State Ionics, 69, 173.
https://doi.org/10.1016/0167-2738(94)90408-1
[43]  Schiemann, M., Bergthorson, J., Fischer, P., Scherer, V., Taroata, D. and Schmid, G. (2016) A Review on Lithium Combustion. Applied Energy, 162, 948.
https://doi.org/10.1016/j.apenergy.2015.10.172
[44]  Fang, C., Wang, X. and Meng, Y.S. (2019) Key Issues Hindering a Practical Lithium-Metal Anode. Trends in Chemistry, 1, 152.
https://doi.org/10.1016/j.trechm.2019.02.015
[45]  Guo, Y., Li, H. and Zhai, T. (2017) Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries. Advanced Materials, 29, Article ID: 1702165.
https://doi.org/10.1002/adma.201700007
[46]  Wang, X., Zhang, M., Alvarado, J., Wang, S., Sina, M., Lu, B., Bouwer, J., Xu, W., Xiao, J., Zhang, J.-G., Liu, J. and Meng, Y.S. (2017) New Insights on the Structure of Electrochemically Deposited Lithium Metal and Its Solid Electrolyte Interphases via Cryogenic TEM. Nano Letters, 17, 7606.
https://doi.org/10.1021/acs.nanolett.7b03606
[47]  Li, Y., Li, Y., Pei, A., Yan, K., Sun, Y., Wu, C.-L., Joubert, L.-M., Chin, R., Koh, A.L., Yu, Y., Perrino, J., Butz, B., Chu, S. and Cui, Y. (2017) Atomic Structure of Sensitive Battery Materials and Interfaces Revealed by Cryo-Electron Microscopy. Science, 358, 506.
https://doi.org/10.1126/science.aam6014
[48]  Zachman, M.J., Tu, Z., Choudhury, S., Archer, L.A. and Kourkoutis, L.F. (2018) Cryo-STEM Mapping of Solid-Liquid Interfaces and Dendrites in Lithium-Metal Batteries. Nature, 560, 345.
https://doi.org/10.1038/s41586-018-0397-3
[49]  Fang, C., Li, J., Zhang, M., Zhang, Y., Yang, F., Lee, J.Z., Lee, M.-H., Alvarado, J., Schroeder, M.A., Yang, Y., Lu, B., Williams, N., Ceja, M., Li Yang., Cai, M., Gu, J., Xu, K., Wang, X. and Meng, Y.S. (2019) Quantifying Inactive Lithium in Lithium Metal Batteries. Nature, 572, 511.
https://doi.org/10.1038/s41586-019-1481-z
[50]  Lu, Y., Tu, Z. and Archer, L.A. (2014) Stable Lithium Electrodeposition in Liquid and Nanoporous Solid Electrolytes. Nature Materials, 13, 961.
https://doi.org/10.1038/nmat4041
[51]  Zhang, Y., Qian, J., Xu, W., Russell, S.M., Chen, X., Nasybulin, E., Bhattacharya, P., Engelhard, M.H., Mei, D., Cao, R., Ding, F., Cresce, A.V., Xu, K. and Zhang, J.-G. (2014) Dendrite-Free Lithium Deposition with Self-Aligned Nanorod Structure. Nano Letters, 14, 6889.
https://doi.org/10.1021/nl5039117
[52]  Yu, Z., Wang, H., Kong, X., Huang, W., Tsao, Y., Mackanic, D.G., Wang, K., Wang, X., Huang, W., Choudhury, S., Zheng, Y., Amanchukwu, C.V., Hung, S.T., Ma, Y., Lomeli, E.G., Qin, J., Cui, Y. and Bao, Z. (2020) Molecular Design for Electrolyte Solvents Enabling Energy-Dense and Long-Cycling Lithium Metal Batteries. Nature Energy, 5, 526.
https://doi.org/10.1038/s41560-020-0634-5
[53]  Weber, R., Genovese, M., Louli, A.J., Hames, S., Martin, C., Hill, I.G. and Dahn, J.R. (2019) Long Cycle Life and Dendrite-Free Lithium Morphology in Anode-Free Lithium Pouch Cells Enabled by a Dual-Salt Liquid Electrolyte. Nature Energy, 4, 683.
https://doi.org/10.1038/s41560-019-0428-9
[54]  Rustomji, C.S., Yang, Y., Kim, T.K., Mac, J., Kim, Y.J., Caldwell, E., Chung, H. and Meng, Y.S. (2017) Liquefied Gas Electrolytes for Electrochemical Energy Storage Devices. Science, 356, 1351.
https://doi.org/10.1126/science.aal4263
[55]  Yang, Y., Davies, D.M., Yin, Y., Borodin, O., Lee, J.Z., Fang, C., Olguin, M., Zhang, Y., Sablina, E.S., Wang, X., Rustomji, C.S. and Meng, Y.S. (2019) High-Efficiency Lithium-Metal Anode Enabled by Liquefied Gas Electrolytes. Joule, 3, 1986.
https://doi.org/10.1016/j.joule.2019.06.008
[56]  Yang, Y., Yin, Y., Davies, D.M., Zhang, M., Mayer, M., Zhang, Y., Sablina, E.S., Wang, S., Lee, J.Z., Borodin, O., Rustomji, C.S. and Meng, Y.S. (2020) Liquefied Gas Electrolytes for Wide-Temperature Lithium Metal Batteries. Energy & Environmental Science, 13, 2209.
https://doi.org/10.1039/D0EE01446J
[57]  Chawla, N., Bharti, N. and Singh, S. (2019) Recent Advances in Non-Flammable Electrolytes for Safer Lithium-Ion Batteries. Batteries, 5, 19.
https://doi.org/10.3390/batteries5010019
[58]  Chen, S., Zheng, J., Yu, L., Ren, X., Engelhard, M.H., Niu, C., Lee, H., Xu, W., Xiao, J., Liu, J. and Zhang, J.-G. (2018) High-Efficiency Lithium Metal Batteries with Fire-Retardant Electrolytes. Joule, 2, 1548.
https://doi.org/10.1016/j.joule.2018.05.002
[59]  Fan, X., Chen, L., Borodin, O., Ji, X., Chen, J., Hou, S., Deng, T., Zheng, J., Yang, C., Liou, S.-C., Amine, K., Xu, K. and Wang, C. (2018) Non-Flammable Electrolyte Enables Li-Metal Batteries with Aggressive Cathode Chemistries. Nature Nanotechnology, 13, 715.
https://doi.org/10.1038/s41565-018-0183-2
[60]  Qian, J., Henderson, W.A., Xu, W., Bhattacharya, P., Engelhard, M., Borodin, O. and Zhang, J.-G. (2015) High Rate and Stable Cycling of Lithium Metal Anode. Nature Communications, 6, 6362.
https://doi.org/10.1038/ncomms7362
[61]  Janek, J. and Zeier, W.G. (2016) A Solid Future for Battery Development. Nature Energy, 1, 16141.
https://doi.org/10.1038/nenergy.2016.141
[62]  Chen, S., Zheng, J., Mei, D., Han, K.S., Engelhard, M.H., Zhao, W., Xu, W., Liu, J. and Zhang, J.-G. (2018) High-Voltage Lithium-Metal Batteries Enabled by Localized High-Concentration Electrolytes. Advanced Materials, 30, e1706102.
https://doi.org/10.1002/adma.201706102
[63]  Park, K. and Goodenough, J.B. (2017) Dendrite-Suppressed Lithium Plating from a Liquid Electrolyte via Wetting of Li3N. Advanced Energy Materials, 7, Article ID: 1700732.
https://doi.org/10.1002/aenm.201700732
[64]  Li, N.-W., Yin, Y.-X., Yang, C.-P. and Guo, Y.-G. (2016) An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes. Advanced Materials, 28, 1853.
https://doi.org/10.1002/adma.201504526
[65]  Gao, Y., Zhao, Y., Li, Y.C., Huang, Q., Mallouk, T.E. and Wang, D. (2017) Interfacial Chemistry Regulation via a Skin-Grafting Strategy Enables High-Performance Lithium-Metal Batteries. Journal of the American Chemical Society, 139, 15288.
https://doi.org/10.1021/jacs.7b06437
[66]  Gao, Y., Yan, Z., Gray, J.L., He, X., Wang, D., Chen, T., Huang, Q., Li, Y.C., Wang, H., Kim, S.H., Mallouk, T.E. and Wang, D. (2019) Polymer-Inorganic Solid-Electrolyte Interphase for Stable Lithium Metal Batteries under Lean Electrolyte Conditions. Nature Materials, 18, 384.
https://doi.org/10.1038/s41563-019-0305-8
[67]  Gao, Y., Rojas, T., Wang, K., Liu, S., Wang, D., Chen, T., Wang, H., Ngo, A.T. and Wang, D. (2020) Low-Temperature and High-Rate-Charging Lithium Metal Batteries Enabled by an Electrochemically Active Monolayer-Regulated Interface. Nature Energy, 5, 534.
https://doi.org/10.1038/s41560-020-0640-7
[68]  Liu, K., Zhuo, D., Lee, H.-W., Liu, W., Lin, D., Lu, Y. and Cui, Y. (2017) Extending the Life of Lithium-Based Rechargeable Batteries by Reaction of Lithium Dendrites with a Novel Silica Nanoparticle Sandwiched Separator. Advanced Materials, 29, Article ID: 1603987.
https://doi.org/10.1002/adma.201603987
[69]  Liu, Y., Liu, Q., Le, X., Liu, Y., Yang, F., Stach, E.A. and Xie, J. (2017) Making Li-Metal Electrodes Rechargeable by Controlling the Dendrite Growth Direction. Nature Energy, 2, 17083.
https://doi.org/10.1038/nenergy.2017.83
[70]  Lin, D., Zhuo, D., Liu, Y. and Cui, Y. (2016) All-Integrated Bifunctional Separator for Li Dendrite Detection via Novel Solution Synthesis of a Thermostable Polyimide Separator. Journal of the American Chemical Society, 138, 11044.
https://doi.org/10.1021/jacs.6b06324
[71]  Pan, R., Sun, R., Wang, Z., Lindh, J., Edstr?m, K., Str?mme, M. and Nyholm, L. (2019) Sandwich-Structured Nano/Micro Fiber-Based Separators for Lithium Metal Batteries. Nano Energy, 55, 316.
https://doi.org/10.1016/j.nanoen.2018.11.005
[72]  Liang, J., Chen, Q., Liao, X., Yao, P., Zhu, B., Lv, G., Wang, X., Chen, X. and Zhu, J. (2020) A Nano-Shield Design for Separators to Resist Dendrite Formation in Lithium-Metal Batteries. Angewandte Chemie International Edition, 59, 6561.
https://doi.org/10.1002/anie.201915440
[73]  Tang, Z., Li, S., Li, Y., Xu, H., Yu, Y., Huang, Y. and Li, J. (2020) Lithium Metal Electrode Protected by Stiff and Tough Self-Compacting Separator. Nano Energy, 69, Article ID: 104399.
https://doi.org/10.1016/j.nanoen.2019.104399
[74]  Kim, P.J. and Pol, V.G. (2018) High Performance Lithium Metal Batteries Enabled by Surface Tailoring of Polypropylene Separator with a Polydopamine/Graphene Layer. Advanced Energy Materials, 8, Article ID: 1802665.
https://doi.org/10.1002/aenm.201802665
[75]  Lee, H., Yanilmaz, M., Toprakci, O., Fu, K. and Zhang, X. (2014) A Review of Recent Developments in Membrane Separators for Rechargeable Lithium-Ion Batteries. Energy & Environmental Science, 7, 3857.
https://doi.org/10.1039/C4EE01432D
[76]  Feng, X., Fang, M., He, X., Ouyang, M., Lu, L., Wang, H. and Zhang, M. (2014) Thermal Runaway Features of Large Format Prismatic Lithium Ion Battery Using Extended Volume Accelerating Rate Calorimetry. Journal of Power Sources, 255, 294.
https://doi.org/10.1016/j.jpowsour.2014.01.005
[77]  Jeong, H.-S., Kim, D.-W., Jeong, Y. U. and Lee, S.-Y. (2010) Effect of Phase Inversion on Microporous Structure Development of Al2O3/Poly(vinylidene fluoride-hexafluoropropylene) Based Ceramic Composite Separators for Lithium-Ion Batteries. Journal of Power Sources, 195, 6116.
https://doi.org/10.1016/j.jpowsour.2009.10.085
[78]  Shi, C., Zhang, P., Huang, S., He, X., Yang, P., Wu, D., Sun, D. and Zhao, J. (2015) Functional Separator Consisted of Polyimide Nonwoven Fabrics and Polyethylene Coating Layer for Lithium-Ion Batteries. Journal of Power Sources, 298, 158.
https://doi.org/10.1016/j.jpowsour.2015.08.008
[79]  Lee, J., Lee, C.-L., Park, K. and Kim, I.-D. (2014) Synthesis of an Al2O3-Coated Polyimide Nanofiber Mat and Its Electrochemical Characteristics as a Separator for Lithium Ion Batteries. Journal of Power Sources, 248, 1211.
https://doi.org/10.1016/j.jpowsour.2013.10.056
[80]  Zhang, Y., Luo, W., Wang, C., Li, Y., Chen, C., Song, J., Dai, J., Hitz, E.M., Xu, S., Yang, C., Wang, Y. and Hu, L. (2017) High-Capacity, Low-Tortuosity, and Channel-Guided Lithium Metal Anode. Proceedings of the National Academy of Sciences of the United States of America, 114, 3584.
https://doi.org/10.1073/pnas.1618871114
[81]  Ye, H., Xin, S., Yin, Y.-X., Li, J.-Y., Guo, Y.-G. and Wan, L.-J. (2017) Stable Li Plating/Stripping Electrochemistry Realized by a Hybrid Li Reservoir in Spherical Carbon Granules with 3d Conducting Skeletons. Journal of the American Chemical Society, 139, 5916.
https://doi.org/10.1021/jacs.7b01763
[82]  Yang, C., Zhang, L., Liu, B., Xu, S., Hamann, T., McOwen, D., Dai, J., Luo, W., Gong, Y., Wachsman, E.D. and Hu, L. (2018) Continuous Plating/Stripping Behavior of Solid-State Lithium Metal Anode in a 3D Ion-Conductive Framework. Proceedings of the National Academy of Sciences of the United States of America, 115, 3770.
https://doi.org/10.1073/pnas.1719758115
[83]  Liang, Z., Lin, D., Zhao, J., Lu, Z., Liu, Y., Liu, C., Lu, Y., Wang, H., Yan, K., Tao, X. and Cui, Y. (2016) Composite Lithium Metal Anode by Melt Infusion of Lithium into a 3D Conducting Scaffold with Lithiophilic Coating. Proceedings of the National Academy of Sciences of the United States of America, 113, 2862.
https://doi.org/10.1073/pnas.1518188113
[84]  Suriyakumar, S. and Stephan, A.M. (2020) Mitigation of Polysulfide Shuttling by Interlayer/Permselective Separators in Lithium-Sulfur Batteries. ACS Applied Energy Materials, 3, 8095.
https://doi.org/10.1021/acsaem.0c01354
[85]  Goodenough, J.B. and Kim, Y. (2010) Challenges for Rechargeable Li Batteries. Chemistry of Materials, 22, 587.
https://doi.org/10.1021/cm901452z
[86]  Whittingham, M.S. (2004) Lithium Batteries and Cathode Materials. Chemical Reviews, 104, 4271.
https://doi.org/10.1021/cr020731c
[87]  Dunn, B., Kamath, H. and Tarascon, J.-M. (2011) Electrical Energy Storage for the Grid: A Battery of Choices. Science, 334, 928.
https://doi.org/10.1126/science.1212741
[88]  Yoo, H.D., Markevich, E., Salitra, G., Sharon, D. and Aurbach, D. (2014) On the Challenge of Developing Advanced Technologies for Electrochemical Energy Storage and Conversion. Materials Today, 17, 110.
https://doi.org/10.1016/j.mattod.2014.02.014
[89]  Wang, F., Liang, C.-S., Pang, Y., Xu, Y.-H. and Luo, Z.-K. (2013) Electrochemical Performance of a Nonaqueous Rechargeable Lithium-Air Battery. Ionics, 19, 1791.
https://doi.org/10.1007/s11581-013-0932-z
[90]  Christensen, J., Albertus, P., Sanchez-Carrera, R.S., Lohmann, T., Kozinsky, B., Liedtke, R., Ahmed, J. and Kojic, A. (2011) A Critical Review of Li/Air Batteries. Journal of the Electrochemical Society, 159, R1-R30.
https://doi.org/10.1149/2.086202jes
[91]  Li, F., Zhang, T. and Zhou, H. (2013) Challenges of Non-Aqueous Li-O2 Batteries: Electrolytes, Catalysts, and Anodes. Energy & Environmental Science, 6, 1125.
https://doi.org/10.1039/c3ee00053b
[92]  Manthiram, A., Fu, Y., Chung, S.-H., Zu, C. and Su, Y.-S. (2014) Rechargeable Lithium-Sulfur Batteries. Chemical Reviews, 114, 11751.
https://doi.org/10.1021/cr500062v
[93]  Ji, X. and Nazar, L.F. (2010) Advances in Li-S Batteries. Journal of Materials Chemistry, 20, 9821.
https://doi.org/10.1039/b925751a
[94]  Ji, X., Lee, K.T. and Nazar, L.F. (2009) A Highly Ordered Nanostructured Carbon-Sulfur Cathode for Lithium-Sulphur Batteries. Nature Materials, 8, 500.
https://doi.org/10.1038/nmat2460
[95]  Pang, Q., Liang, X., Kwok, C.Y. and Nazar, L.F. (2015) Review—The Importance of Chemical Interactions between Sulfur Host Materials and Lithium Polysulfides for Advanced Lithium-Sulfur Batteries. Journal of the Electrochemical Society, 162, A2567-A2576.
https://doi.org/10.1149/2.0171514jes
[96]  Cleaver, T., Kovacik, P., Marinescu, M., Zhang, T. and Offer, G. (2018) Perspective Commercializing Lithium Sulfur Batteries: Are We Doing the Right Research? Journal of the Electrochemical Society, 165, A6029-A6033.
https://doi.org/10.1149/2.0071801jes
[97]  Rosenman, A., Markevich, E., Salitra, G., Aurbach, D., Garsuch, A. and Chesneau, F.F. (2015) Review on Lithium-Sulfur Battery Systems: An Integral Perspective. Advanced Energy Materials, 5, Article ID: 1500212.
https://doi.org/10.1002/aenm.201500212
[98]  Yang, Y., Zheng, G. and Cui, Y. (2013) Nanostructured Sulfur Cathodes. Chemical Society Reviews, 42, 3018.
https://doi.org/10.1039/c2cs35256g
[99]  Xin, S., Gu, L., Zhao, N.-H., Yin, Y.-X., Zhou, L.-J., Guo, Y.-G. and Wan, L.-J. (2012) Smaller Sulfur Molecules Promise Better Lithium-Sulfur Batteries. Journal of the American Chemical Society, 134, 18510.
https://doi.org/10.1021/ja308170k
[100]  Liang, C., Dudney, N.J. and Howe, J.Y. (2009) Hierarchically Structured Sulfur/Carbon Nanocomposite Material for High-Energy Lithium Battery. Chemistry of Materials, 21, 4724.
https://doi.org/10.1021/cm902050j
[101]  Suriyakumar, S., Angulakshmi, N. and Stephan, A.M. (2017) Better Performing Composite Cathode Encompassing Graphene and Magnesium Aluminate for Li-S Batteries. Nano-Structures & Nano-Objects, 11, 46.
https://doi.org/10.1016/j.nanoso.2017.06.001
[102]  Wang, Z., Wang, B., Yang, Y., Cui, Y., Wang, Z., Chen, B. and Qian, G. (2015) Mixed-Metal-Organic Framework with Effective Lewis Acidic Sites for Sulfur Confinement in High-Performance Lithium-Sulfur Batteries. ACS Applied Materials & Interfaces, 7, 20999.
https://doi.org/10.1021/acsami.5b07024
[103]  Yuan, L.-X., Wang, Z.-H., Zhang, W.-X., Hu, X.-L., Chen, J.-T., Huang, Y.-H. and Goodenough, J.B. (2011) Development and Challenges of LiFePO4 Cathode Material for Lithium-Ion Batteries. Energy & Environmental Science, 4, 269.
https://doi.org/10.1039/C0EE00029A
[104]  Ji, L., Rao, M., Zheng, H., Zhang, L., Li, Y., Duan, W., Guo, J., Cairns, E.. and Zhang, Y. (2011) Graphene Oxide as a Sulfur Immobilizer in High Performance Lithium-Sulfur Cells. Journal of the American Chemical Society, 133, 18522.
https://doi.org/10.1021/ja206955k
[105]  Park, H. and Siegel, D.J. (2017) Tuning the Adsorption of Polysulfides in Lithium-Sulfur Batteries with Metal-Organic Frameworks. Chemistry of Materials, 29, 4932.
https://doi.org/10.1021/acs.chemmater.7b01166
[106]  Suriyakumar, S., Madasamy, K., Kathiresan, M., Alkordi, M.H. and Stephan, A.M. (2018) Improved Cycling Performance of Lithium-Sulfur Cell through Supramolecular Interactions. The Journal of Physical Chemistry C, 122, 27843.
https://doi.org/10.1021/acs.jpcc.8b08785
[107]  Chang, D.-R., Lee, S.-H., Kim, S.-W. and Kim, H.-T. (2002) Binary Electrolyte Based on Tetra(ethylene glycol) Dimethyl Ether and 1,3-Dioxolane for Lithium-Sulfur Battery. Journal of Power Sources, 112, 452.
https://doi.org/10.1016/S0378-7753(02)00418-4
[108]  Pan, Q., Smith, D.M., Qi, H., Wang, S. and Li, C.Y. (2015) Hybrid Electrolytes with Controlled Network Structures for Lithium Metal Batteries. Advanced Materials, 27, 5995.
https://doi.org/10.1002/adma.201502059
[109]  Scheers, J., Fantini, S. and Johansson, P. (2014) A Review of Electrolytes for Lithium-Sulphur Batteries. Journal of Power Sources, 255, 204.
https://doi.org/10.1016/j.jpowsour.2014.01.023
[110]  Suriyakumar, S., Kathiresan, M. and Stephan, A.M. (2019) Charge-Discharge and Interfacial Properties of Ionic Liquid-Added Hybrid Electrolytes for Lithium-Sulfur Batteries. ACS Omega, 4, 3894.
https://doi.org/10.1021/acsomega.8b03544
[111]  Barchasz, C., Leprêtre, J.-C., Alloin, F. and Patoux, S. (2012) New Insights into the Limiting Parameters of the Li-S Rechargeable Cell. Journal of Power Sources, 199, 322.
https://doi.org/10.1016/j.jpowsour.2011.07.021
[112]  Rezqita, A., Sauer, M., Foelske, A., Kronberger, H. and Trifonova, A. (2017) The Effect of Electrolyte Additives on Electrochemical Performance of Silicon/Mesoporous Carbon (Si/MC) for Anode Materials for Lithium-Ion Batteries. Electrochimica Acta, 247, 600.
https://doi.org/10.1016/j.electacta.2017.06.128
[113]  Raja, M., Angulakshmi, N. and Stephan, A.M. (2016) Sisal-Derived Activated Carbons for Cost-Effective Lithium-Sulfur Batteries. RSC Advances, 6, 13772.
https://doi.org/10.1039/C5RA25850B
[114]  Mikhaylik, Y.V. and Akridge, J.R. (2004) Polysulfide Shuttle Study in the Li?s Battery System. Journal of the Electrochemical Society, 151, A1969-A1976.
https://doi.org/10.1149/1.1806394
[115]  Yan, J., Liu, X. and Li, B. (2016) Capacity Fade Analysis of Sulfur Cathodes in Lithium-Sulfur Batteries. Advanced Science, 3, Article ID: 1600101.
https://doi.org/10.1002/advs.201600101
[116]  Yan, J., Liu, X., Wang, X. and Li, B. (2015) Long-Life, High-Efficiency Lithium/Sulfur Batteries from Sulfurized Carbon Nanotube Cathodes. Journal of Materials Chemistry A, 3, 10127.
https://doi.org/10.1039/C5TA00286A
[117]  Barchasz, C., Molton, F., Duboc, C., Leprêtre, J.-C., Patoux, S. and Alloin, F. (2012) Lithium/Sulfur Cell Discharge mechanism: An Original Approach for Intermediate Species Identification. Analytical Chemistry, 84, 3973.
https://doi.org/10.1021/ac2032244
[118]  Nelson, J., Misra, S., Yang, Y., Jackson, A., Liu, Y., Wang, H., Dai, H. andrews, J.C., Cui, Y. and Toney, M.F. (2012) In Operando X-Ray Diffraction and Transmission X-Ray Microscopy of Lithium Sulfur Batteries. Journal of the American Chemical Society, 134, 6337.
https://doi.org/10.1021/ja2121926
[119]  Wang, L., Zhang, T., Yang, S., Cheng, F., Liang, J. and Chen, J. (2013) A Quantum-Chemical Study on the Discharge Reaction Mechanism of Lithium-Sulfur Batteries. Journal of Energy Chemistry, 22, 72.
https://doi.org/10.1016/S2095-4956(13)60009-1
[120]  Mistry, A.N. and Mukherjee, P.P. (2018) “Shuttle” in Polysulfide Shuttle: Friend or Foe? The Journal of Physical Chemistry C, 122, 23845.
https://doi.org/10.1021/acs.jpcc.8b06077
[121]  Yang, L., Li, Q., Wang, Y., Chen, Y., Guo, X., Wu, Z., Chen, G., Zhong, B., Xiang, W. and Zhong, Y. (2020) A Review of Cathode Materials in Lithium-Sulfur Batteries. Ionics, 26, 5299.
https://doi.org/10.1007/s11581-020-03767-3
[122]  Yu, Z., Liu, M., Guo, D., Wang, J., Chen, X., Li, J., Jin, H., Yang, Z., Chen, X. and Wang, S. (2020) Radially Inwardly Aligned Hierarchical Porous Carbon for Ultra-Long-Life Lithium-Sulfur Batteries. Angewandte Chemie International Edition, 59, 6406.
https://doi.org/10.1002/anie.201914972
[123]  Ren, M., Lu, X., Chai, Y., Zhou, X., Ren, J., Zheng, Q. and Lin, D. (2019) A Three-Dimensional Conductive Cross-Linked All-Carbon Network Hybrid as a Sulfur Host for High Performance Lithium-Sulfur Batteries. Journal of Colloid and Interface Science, 552, 91.
https://doi.org/10.1016/j.jcis.2019.05.042
[124]  Cao, J., Chen, C., Zhao, Q., Zhang, N., Lu, Q., Wang, X., Niu, Z. and Chen, J. (2016) A Flexible Nanostructured Paper of a Reduced Graphene Oxide-Sulfur Composite for High-Performance Lithium-Sulfur Batteries with Unconventional Configurations. Advanced Materials, 28, 9629.
https://doi.org/10.1002/adma.201602262
[125]  Wang, R., Yang, J., Chen, X., Zhao, Y., Zhao, W., Qian, G., Li, S., Xiao, Y., Chen, H., Ye, Y., Zhou, G. and Pan, F. (2020) Highly Dispersed Cobalt Clusters in Nitrogen-Doped Porous Carbon Enable Multiple Effects for High-Performance Li-S Battery. Advanced Energy Materials, 10, Article ID: 1903550.
https://doi.org/10.1002/aenm.201903550
[126]  Jin, J., Cai, W., Cai, J., Shao, Y., Song, Y., Xia, Z., Zhang, Q. and Sun, J. (2020) MOF-Derived Hierarchical CoP Nanoflakes Anchored on Vertically Erected Graphene Scaffolds as Self-Supported and Flexible Hosts for Lithium-Sulfur Batteries. Journal of Materials Chemistry A, 8, 3027.
https://doi.org/10.1039/C9TA13046B
[127]  Chen, M., Zheng, J., Sheng, O., Jin, C., Yuan, H., Liu, T., Liu, Y., Wang, Y., Nai, J. and Tao, X. (2019) Sulfur-Nitrogen Co-Doped Porous Carbon Nanosheets to Control Lithium Growth for A Stable Lithium Metal Anode. Journal of Materials Chemistry A, 7, 18267.
https://doi.org/10.1039/C9TA05684J
[128]  Xu, G., Ding, B., Nie, P., Shen, L., Wang, J. and Zhang, X. (2013) Porous Nitrogen-Doped Carbon Nanotubes Derived from Tubular Polypyrrole for Energy-Storage Applications. Chemistry—A European Journal, 19, 12306.
https://doi.org/10.1002/chem.201301352
[129]  Ai, W., Zhou, W., Du, Z., Chen, Y., Sun, Z., Wu, C., Zou, C., Li, C., Huang, W. and Yu, T. (2017) Nitrogen and Phosphorus Codoped Hierarchically Porous Carbon as an Efficient Sulfur Host for Li-S Batteries. Energy Storage Materials, 6, 112.
https://doi.org/10.1016/j.ensm.2016.10.008
[130]  Wang, Y., Li, M., Xu, L., Tang, T., Ali, Z., Huang, X., Hou, Y. and Zhang, S. (2019) Polar and Conductive Iron Carbide@N-Doped Porous Carbon Nanosheets as a Sulfur Host for High Performance Lithium Sulfur Batteries. Chemical Engineering Journal, 358, 962.
https://doi.org/10.1016/j.cej.2018.10.086
[131]  Deng, W., Zhou, X., Fang, Q. and Liu, Z. (2017) A Bifunctional Hierarchical Porous Carbon Network Integrated with an in Situ Formed Ultrathin Graphene Shell for Stable Lithium-Sulfur Batteries. Journal of Materials Chemistry A, 5, 13674.
https://doi.org/10.1039/C7TA01291H
[132]  Wang, H., Yang, Y., Liang, Y., Robinson, J.T., Li, Y., Jackson, A., Cui, Y. and Dai, H. (2011) Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium-Sulfur Battery Cathode Material with High Capacity and Cycling Stability. Nano Letters, 11, 2644.
https://doi.org/10.1021/nl200658a
[133]  Yin, L.-C., Liang, J., Zhou, G.-M., Li, F., Saito, R. and Cheng, H.-M. (2016) Understanding the Interactions between Lithium Polysulfides and N-Doped Graphene Using Density Functional Theory Calculations. Nano Energy, 25, 203.
https://doi.org/10.1016/j.nanoen.2016.04.053
[134]  Zhang, L., Liu, D., Muhammad, Z., Wan, F., Xie, W., Wang, Y., Li, S., Niu, Z. and Chen, J. (2019) Single Nickel Atoms on Nitrogen-Doped Graphene Enabling Enhanced Kinetics of Lithium-Sulfur Batteries. Advanced Materials, 31, e1903955.
https://doi.org/10.1002/adma.201903955
[135]  Wan, P., Yang, W., Wang, X., Hu, J. and Zhang, H. (2015) Reduced Graphene Oxide Modified with Hierarchical Flower-Like In(OH)3 for NO2 Room-Temperature Sensing. Sensors and Actuators B, 214, 36.
https://doi.org/10.1016/j.snb.2015.02.100
[136]  Zhang, Y., Ge, X., Kang, Q., Kong, Z., Wang, Y. and Zhan, L. (2020) Vanadium Oxide Nanorods Embed in Porous Graphene Aerogel as High-Efficiency Polysulfide-Trapping-Conversion Mediator for High Performance Lithium-Sulfur Batteries. Chemical Engineering Journal, 393, Article ID: 124570.
https://doi.org/10.1016/j.cej.2020.124570
[137]  Zhao, Y., Wu, W., Li, J., Xu, Z. and Guan, L. (2014) Encapsulating MWNTs into Hollow Porous Carbon Nanotubes: A Tube-in-Tube Carbon Nanostructure for High-Performance Lithium-Sulfur Batteries. Advanced Materials, 26, 5113.
https://doi.org/10.1002/adma.201401191
[138]  Ummethala, R., Fritzsche, M., Jaumann, T., Balach, J., Oswald, S., Nowak, R., Sobczak, N., Kaban, I., Rümmeli, M. H. and Giebeler, L. (2018) Lightweight, Free-Standing 3D Interconnected Carbon Nanotube Foam as a Flexible Sulfur Host for High Performance Lithium-Sulfur Battery Cathodes. Energy Storage Materials, 10, 206.
https://doi.org/10.1016/j.ensm.2017.04.004
[139]  Fang, R., Li, G., Zhao, S., Yin, L., Du, K., Hou, P., Wang, S., Cheng, H.-M., Liu, C. and Li, F. (2017) Single-Wall Carbon Nanotube Network Enabled Ultrahigh Sulfur-Content Electrodes for High-Performance Lithium-Sulfur Batteries. Nano Energy, 42, 205.
https://doi.org/10.1016/j.nanoen.2017.10.053
[140]  Zhou, G., Wang, D.-W., Li, F., Hou, P.-X., Yin, L., Liu, C., Lu, G.Q., Gentle, I.R. and Cheng, H.-M. (2012) A Flexible Nanostructured Sulphur-Carbon Nanotube Cathode with High Rate Performance for Li-S Batteries. Energy & Environmental Science, 5, 8901.
https://doi.org/10.1039/c2ee22294a
[141]  Zhang, C., Wu, H.B., Yuan, C., Guo, Z. and Lou, X.W. (2012) Confining Sulfur in Double-Shelled Hollow Carbon Spheres for Lithium-Sulfur Batteries. Angewandte Chemie International Edition, 51, 9592.
https://doi.org/10.1002/anie.201205292
[142]  Zhu, L., Peng, H.-J., Liang, J., Huang, J.-Q., Chen, C.-M., Guo, X., Zhu, W., Li, P. and Zhang, Q. (2015) Interconnected Carbon Nanotube/Graphene Nanosphere Scaffolds as Free-Standing Paper Electrode for High-Rate And Ultra-Stable Lithium-Sulfur Batteries. Nano Energy, 11, 746.
https://doi.org/10.1016/j.nanoen.2014.11.062
[143]  Wang, T., Zhu, J., Wei, Z., Yang, H., Ma, Z., Ma, R., Zhou, J., Yang, Y., Peng, L., Fei, H., Lu, B. and Duan, X. (2019) Bacteria-Derived Biological Carbon Building Robust Li-S Batteries. Nano Letters, 19, 4384.
https://doi.org/10.1021/acs.nanolett.9b00996
[144]  Yu, M., Li, R., Tong, Y., Li, Y., Li, C., Hong, J.-D. and Shi, G. (2015) A Graphene Wrapped Hair-Derived Carbon/Sulfur Composite for Lithium-Sulfur Batteries. Journal of Materials Chemistry A, 3, 9609.
https://doi.org/10.1039/C5TA00651A
[145]  Wu, W., Pu, J., Wang, J., Shen, Z., Tang, H., Deng, Z., Tao, X., Pan, F. and Zhang, H. (2018) Biomimetic Bipolar Microcapsules Derived from Staphylococcus aureus for Enhanced Properties of Lithium-Sulfur Battery Cathodes. Advanced Energy Materials, 8, Article ID: 1702373.
https://doi.org/10.1002/aenm.201702373
[146]  Luo, C., Zhu, H., Luo, W., Shen, F., Fan, X., Dai, J., Liang, Y., Wang, C. and Hu, L. (2017) Atomic-Layer-Deposition Functionalized Carbonized Mesoporous Wood Fiber for High Sulfur Loading Lithium Sulfur Batteries. ACS Applied Materials & Interfaces, 9, 14801.
https://doi.org/10.1021/acsami.7b01205
[147]  Bhargav, A., He, J., Gupta, A. and Manthiram, A. (2020) lithium-Sulfur Batteries: Attaining the Critical Metrics. Joule, 4, 285.
https://doi.org/10.1016/j.joule.2020.01.001
[148]  Li, Q., Liu, Y., Wang, Y., Chen, Y., Guo, X., Wu, Z. and Zhong, B. (2020) Review of the Application of Biomass-Derived Porous Carbon in Lithium-Sulfur Batteries. Ionics, 26, 4765.
https://doi.org/10.1007/s11581-020-03694-3
[149]  Cai, D., Lu, M., La Li., Cao, J., Chen, D., Tu, H., Li, J. and Han, W. (2019) A Highly Conductive MOF of Graphene Analogue Ni3(HITP)2 as a Sulfur Host for High-Performance Lithium-Sulfur Batteries. Small, 15, e1902605.
https://doi.org/10.1002/smll.201902605
[150]  Park, J., Lee, M., Feng, D., Huang, Z., Hinckley, A.C., Yakovenko, A., Zou, X., Cui, Y. and Bao, Z. (2018) Stabilization of Hexaaminobenzene in a 2D Conductive Metal-Organic Framework for High Power Sodium Storage. Journal of the American Chemical Society, 140, 10315.
https://doi.org/10.1021/jacs.8b06020
[151]  Aubrey, M.L., Wiers, B.M. andrews, S.C., Sakurai, T., Reyes-Lillo, S.E., Hamed, S.M., Yu, C.-J., Darago, L.E., Mason, J.A., Baeg, J.-O., Grandjean, F., Long, G.J., Seki, S., Neaton, J.B., Yang, P. and Long, J.R. (2018) Electron Delocalization and Charge Mobility as a Function of Reduction in a Metal-Organic Framework. Nature Materials, 17, 625.
https://doi.org/10.1038/s41563-018-0098-1
[152]  Hu, Y., Chen, W., Lei, T., Jiao, Y., Huang, J., Hu, A., Gong, C., Yan, C., Wang, X. and Xiong, J. (2020) Strategies toward High-Loading Lithium-Sulfur Battery. Advanced Energy Materials, 10, Article ID: 2000082.
https://doi.org/10.1002/aenm.202000082
[153]  Liu, X., Huang, J.-Q., Zhang, Q. and Mai, L. (2017) Nanostructured Metal Oxides and Sulfides for Lithium-Sulfur Batteries. Advanced Materials, 29, Article ID: 1601759.
https://doi.org/10.1002/adma.201601759
[154]  Wang, H., Zhang, W., Xu, J. and Guo, Z. (2018) Advances in Polar Materials for Lithium-Sulfur Batteries. Advanced Functional Materials, 28, Article ID: 1707520.
https://doi.org/10.1002/adfm.201707520
[155]  Shi, H., Lv, W., Zhang, C., Wang, D.-W., Ling, G., He, Y., Kang, F. and Yang, Q.-H. (2018) Functional Carbons Remedy the Shuttling of Polysulfides in Lithium-Sulfur Batteries: Confining, Trapping, Blocking, and Breaking Up. Advanced Functional Materials, 28, Article ID: 1800508.
https://doi.org/10.1002/adfm.201800508
[156]  Hang, J.-Y., Kim, H.M., Lee, S.-K., Lee, J.-H., Abouimrane, A., Khaleel, M.A., Belharouak, I., Manthiram, A. and Sun, Y.-K. (2016) High-Energy, High-Rate, Lithium-Sulfur Batteries: Synergetic Effect of Hollow TiO2-Webbed Carbon Nanotubes and a Dual Functional Carbon-Paper Interlayer. Advanced Energy Materials, 6, Article ID: 1501480.
https://doi.org/10.1002/aenm.201501480
[157]  Xu, Z.-L., Kim, J.-K. and Kang, K. (2018) Carbon Nanomaterials for Advanced Lithium Sulfur Batteries. Nano Today, 19, 84.
https://doi.org/10.1016/j.nantod.2018.02.006
[158]  Pang, Q., Tang, J., Huang, H., Liang, X., Hart, C., Tam, K.C. and Nazar, L.F. (2015) A Nitrogen and Sulfur Dual-Doped Carbon Derived from Polyrhodanine@cellulose for Advanced Lithium-Sulfur Batteries. Advanced Materials, 27, 6021.
https://doi.org/10.1002/adma.201502467
[159]  Sun, K., Li, S.-J., Chen, X.-L., Liu, Y., Huang, X.-Q., Wei, D.-H., Qu, L.-B., Zhao, Y.-F. and Yu, B. (2019) Silver-Catalyzed Decarboxylative Radical Cascade Cyclization toward Benzimidazo2,1-aisoquinolin-6(5H)-ones. Chemical Communications, 55, 2861.
https://doi.org/10.1039/C8CC10243K
[160]  Li, T., Bai, X., Gulzar, U., Bai, Y.-J., Capiglia, C., Deng, W., Zhou, X., Liu, Z., Feng, Z. and Proietti Zaccaria, R. (2019) A Comprehensive Understanding of Lithium-Sulfur Battery Technology. Advanced Functional Materials, 29, Article ID: 1901730.
https://doi.org/10.1002/adfm.201901730
[161]  Lv, X., Lei, T., Wang, B., Chen, W., Jiao, Y., Hu, Y., Yan, Y., Huang, J., Chu, J., Yan, C., Wu, C., Wang, J., Niu, X. and Xiong, J. (2019) An Efficient Separator with Low Li-Ion Diffusion Energy Barrier Resolving Feeble Conductivity for Practical Lithium-Sulfur Batteries. Advanced Energy Materials, 9, Article ID: 1901800.
https://doi.org/10.1002/aenm.201901800
[162]  He, J., Luo, L., Chen, Y. and Manthiram, A. (2017) Yolk-shelled C@Fe3O4 Nanoboxes as Efficient Sulfur Hosts for High-Performance Lithium-Sulfur Batteries. Advanced Materials, 29, Article ID: 1702707.
https://doi.org/10.1002/adma.201702707
[163]  Li, Z., He, Q., Xu, X., Zhao, Y., Liu, X., Zhou, C., Ai, D., Xia, L. and Mai, L. (2018) A 3D Nitrogen-Doped Graphene/TiN Nanowires Composite as a Strong Polysulfide Anchor for Lithium-Sulfur Batteries with Enhanced Rate Performance and High Areal Capacity. Advanced Materials, 30, e1804089.
https://doi.org/10.1002/adma.201804089
[164]  Luo, L., Chung, S.-H. and Manthiram, A. (2018) Rational Design of a Dual-Function Hybrid Cathode Substrate for Lithium-Sulfur Batteries. Advanced Energy Materials, 8, Article ID: 1801014.
https://doi.org/10.1002/aenm.201801014
[165]  Guan, B., Zhang, Y., Fan, L., Wu, X., Wang, M., Qiu, Y., Zhang, N. and Sun, K. (2019) Blocking Polysulfide with Co2B@CNT via “Synergetic Adsorptive Effect” toward Ultrahigh-Rate Capability and Robust Lithium-Sulfur Battery. ACS Nano, 13, 6742.
https://doi.org/10.1021/acsnano.9b01329
[166]  Zang, Y., Pei, F., Huang, J., Fu, Z., Xu, G. and Fang, X. (2018) Large-Area Preparation of Crack-Free Crystalline Microporous Conductive Membrane to Upgrade High Energy Lithium-Sulfur Batteries. Advanced Energy Materials, 8, Article ID: 1802052.
https://doi.org/10.1002/aenm.201802052
[167]  Chen, X., Xu, Y., Du, F.-H. and Wang, Y. (2019) Covalent Organic Framework Derived Boron/Oxygen Codoped Porous Carbon on CNTs as an Efficient Sulfur Host for Lithium-Sulfur Batteries. Small Methods, 3, Article ID: 1900338.
https://doi.org/10.1002/smtd.201900338
[168]  Ding, B., Fan, Z., Lin, Q., Wang, J., Chang, Z., Li, T., Henzie, J., Kim, J., Dou, H., Zhang, X. and Yamauchi, Y. (2019) Confined Pyrolysis of ZIF-8 Polyhedrons Wrapped with Graphene Oxide Nanosheets to Prepare 3D Porous Carbon Heterostructures. Small Methods, 3, Article ID: 1900277.
https://doi.org/10.1002/smtd.201900277
[169]  Bao, W., Liu, L., Wang, C., Choi, S., Wang, D. and Wang, G. (2018) Facile Synthesis of Crumpled Nitrogen-Doped Mxene Nanosheets as a New Sulfur Host for Lithium-Sulfur Batteries. Advanced Energy Materials, 8, Article ID: 1702485.
https://doi.org/10.1002/aenm.201702485
[170]  Singh, V., Padhan, A.K., Adhikary, S.D., Tiwari, A., Mandal, D. and Nagaiah, T.C. (2019) Poly(ionic liquid)-Zinc Polyoxometalate Composite as a Binder-Free Cathode for High-Performance Lithium-Sulfur Batteries. Journal of Materials Chemistry A, 7, 3018.
https://doi.org/10.1039/C8TA12192C
[171]  Li, X., Zang, X., Li, Z., Li, X., Li, P., Sun, P., Lee, X., Zhang, R., Huang, Z., Wang, K., Wu, D., Kang, F. and Zhu, H. (2013) Large-Area Flexible Core-Shell Graphene/Porous Carbon Woven Fabric Films for Fiber Supercapacitor Electrodes. Advanced Functional Materials, 9, eea645.
https://doi.org/10.1002/adfm.201300464
[172]  Chung, S.-H., Chang, C.-H. and Manthiram, A. (2016) Hierarchical Sulfur Electrodes as a Testing Platform for Understanding the High-Loading Capability of Li-S Batteries. Journal of Power Sources, 334, 179.
https://doi.org/10.1016/j.jpowsour.2016.10.023
[173]  Ma, L., Zhang, W., Wang, L., Hu, Y., Zhu, G., Wang, Y., Chen, R., Chen, T., Tie, Z., Liu, J. and Jin, Z. (2018) Strong Capillarity, Chemisorption, and Electrocatalytic Capability of Crisscrossed Nanostraws Enabled Flexible, High-Rate, and Long-Cycling Lithium-Sulfur Batteries. ACS Nano, 12, 851.
https://doi.org/10.1021/acsnano.8b01763
[174]  Feng, S., Zhong, H., Song, J., Zhu, C., Dong, P., Shi, Q., Liu, D., Li, J., Chang, Y.-C., Beckman, S.P., Song, M., Du, D. and Lin, Y. (2018) Catalytic Activity of Co-X (X = S, P, O) and Its Dependency on Nanostructure/Chemical Composition in Lithium-Sulfur Batteries. ACS Applied Energy Materials, 1, 7014.
https://doi.org/10.1021/acsaem.8b01434
[175]  Wu, J., Li, X., Zeng, H., Xue, Y., Chen, F., Xue, Z., Ye, Y. and Xie, X. (2019) Fast Electrochemical Kinetics and Strong Polysulfide Adsorption by a Highly Oriented MoS2 Nanosheet@N-Doped Carbon Interlayer for Lithium-Sulfur Batteries. Journal of Materials Chemistry A, 7, 7897.
https://doi.org/10.1039/C9TA00458K
[176]  Liu, Y.-T., Han, D.-D., Wang, L., Li, G.-R., Liu, S. and Gao, X.-P. (2019) NiCo2O4 Nanofibers as Carbon-Free Sulfur Immobilizer to Fabricate Sulfur-Based Composite with High Volumetric Capacity for Lithium-Sulfur Battery. Advanced Energy Materials, 9, Article ID: 1803477.
https://doi.org/10.1002/aenm.201803477
[177]  Song, Y., Zhao, W., Kong, L., Li Zhang., Zhu, X., Shao, Y., Ding, F., Zhang, Q., Sun, J. and Liu, Z. (2018) Synchronous Immobilization and Conversion of Polysulfides on a VO2-VN Binary Host Targeting High Sulfur Load Li-S Batteries. Energy & Environmental Science, 11, 2620.
https://doi.org/10.1039/C8EE01402G
[178]  Xiang, K., Cai, S., Wang, X., Chen, M. and Jiang, S. (2018) Nitrogen-Doped Activated Microporous Carbon Spheres as a Sulfur Matrix for Advanced Lithium-Sulfur Batteries. Journal of Alloys and Compounds, 740, 687.
https://doi.org/10.1016/j.jallcom.2018.01.026
[179]  He, J., Hartmann, G., Lee, M., Hwang, G.S., Chen, Y. and Manthiram, A. (2019) Freestanding 1T MoS2/Graphene Heterostructures as a Highly Efficient Electrocatalyst for Lithium Polysulfides in Li-S Batteries. Energy & Environmental Science, 12, 344.
https://doi.org/10.1039/C8EE03252A
[180]  Chen, W., Lei, T., Wu, C., Deng, M., Gong, C., Hu, K., Ma, Y., Dai, L., Lv, W., He, W., Liu, X., Xiong, J. and Yan, C. (2018) Designing Safe Electrolyte Systems for a High-Stability Lithium-Sulfur Battery. Advanced Energy Materials, 8, Article ID: 1702348.
https://doi.org/10.1002/aenm.201702348
[181]  Lei, T., Chen, W., Lv, W., Huang, J., Zhu, J., Chu, J., Yan, C., Wu, C., Yan, Y., He, W., Xiong, J., Li, Y., Yan, C., Goodenough, J.B. and Duan, X. (2019) Inhibiting Polysulfide Shuttling with a Graphene Composite Separator for Highly Robust Lithium-Sulfur Batteries. Joule, 3, 303.
https://doi.org/10.1016/j.joule.2018.12.016
[182]  Yu, S., Schmidt, R.D., Garcia-Mendez, R., Herbert, E., Dudney, N.J., Wolfenstine, J.B., Sakamoto, J. and Siegel, D.J. (2016) Elastic Properties of the Solid Electrolyte Li7La3Zr2O12(LLZO). Chemistry of Materials, 28, 197.
https://doi.org/10.1021/acs.chemmater.5b03854
[183]  Nagata, H. and Chikusa, Y. (2014) Transformation of P2S5 into a Solid Electrolyte with Ionic Conductivity at the Positive Composite Electrode of All-Solid-State Lithium-Sulfur Batteries. Energy Technology, 2, 753.
https://doi.org/10.1002/ente.201402040
[184]  Xu, R., Yue, J., Liu, S., Tu, J., Han, F., Liu, P. and Wang, C. (2019) Cathode-Supported All-Solid-State Lithium-Sulfur Batteries with High Cell-Level Energy Density. ACS Energy Letters, 4, 1073.
https://doi.org/10.1021/acsenergylett.9b00430
[185]  Ulissi, U., Ito, S., Hosseini, S.M., Varzi, A., Aihara, Y. and Passerini, S. (2018) High Capacity All-Solid-State Lithium Batteries Enabled by Pyrite-Sulfur Composites. Advanced Energy Materials, 8, Article ID: 1801462.
https://doi.org/10.1002/aenm.201801462
[186]  Han, F., Yue, J., Fan, X., Gao, T., Luo, C., Ma, Z., Suo, L. and Wang, C. (2016) High-Performance All-Solid-State Lithium-Sulfur Battery Enabled by a Mixed Conductive Li2S Nanocomposite. Nano Letters, 16, 4521.
https://doi.org/10.1021/acs.nanolett.6b01754

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413