|
Sustainable Energy 2023
废汽车轮胎的能源化利用技术及其问题探讨
|
Abstract:
随着有房有车观念的深入人心及国民经济水平的不断提高,我国的汽车行业得到蓬勃发展,轮胎的生产、消费及废轮胎的产生量也随之跃居世界首位。大量废旧的汽车轮胎在淘汰后若无法得到合理的处理处置,将可能在环境、安全、健康等方面给人们造成威胁。为避免废汽车轮胎进一步引起环境“黑色污染”、安全隐患及资源浪费问题,从能源化的角度综述了焚烧、热解和超临界水氧化等废轮胎的综合利用技术,重点介绍了废轮胎的热解利用及不同热解法的优缺点,并对废汽车轮胎能源化利用在技术、管理及政策等方面存在的问题进行了总结和探讨,最后对我国废汽车轮胎能源化利用的未来发展方向进行了展望,以期为我国汽车及轮胎行业的绿色低碳可持续发展提供经验参考。
With the deepening of the concept of house and car and the continuous improvement of the national economic level, our country's automobile industry had been booming, the tire production, consumption and production of waste tires also jumped to the top of the world. If a large number of used automobile tires could not be disposed of reasonably after being eliminated, it might pose a threat to the environment, safety, health and so on. In order to avoid the waste automobile tire further causing the environment “the black pollution”, the security hidden danger and the resources waste question, the comprehensive utilization technologies of waste tyres such as incineration, pyrolysis and supercritical water oxidation were reviewed from an energy perspective. The pyrolysis utilization of waste tyres and the advantages and disadvantages of different pyrolysis methods were highlighted, the problems in technology, management and policy of energy utilization of waste automobile tire were summarized and discussed. Finally, the future development direction of energy utilization of waste automobile tire in China was prospected, in order to provide the experience reference for the green and low-carbon sustainable development of our country’s automobile and tire industry.
[1] | 王萍. 新兴汽车品牌营销策略研究[D]: [硕士学位论文]. 广州: 暨南大学, 2015. |
[2] | 崔吕萍. 轮胎生产第一大国, 能否在“废胎变宝”上动动脑筋? [J]. 中国轮胎资源综合利用, 2022(5): 27-28. |
[3] | 林火灿. 我国废旧轮胎产生量居全球首位-热裂解技术有望变废为宝[J]. 中国轮胎资源综合利用, 2018(9): 39-41. |
[4] | 聂永丰. 固体废物处理工程技术手册[M]. 北京: 化学工业出版社, 2013. |
[5] | 谢忠设. 资本发力了, 废橡胶利用能否迎来大发展? [J]. 中国石油和化工, 2018(7): 39-41. |
[6] | 中国物资再生协会. 中国再生资源回收行业发展报告(2022) [R]. 北京: 中国物资再生协会, 2022. |
[7] | Thomas, B.S., Gupta, R.C. and Panicker, V.J. (2016) Recycling of Waste Tire Rubber as Aggregate in Concrete: Durability-Related Performance. Journal of Cleaner Production, 112, 504-513.
https://doi.org/10.1016/j.jclepro.2015.08.046 |
[8] | Xu, L., Jiang, Y. and Qiu, R. (2017) Parametric Study and Global Sensitivity Analysis for Co-Pyrolysis of Rape Straw and Waste Tire via Variance-Based Decomposition. Biore-source Technology, 247, 545-552.
https://doi.org/10.1016/j.biortech.2017.09.141 |
[9] | 权家薇, 于佳雪, 许君清, 等. 废轮胎的资源化回收利用[J]. 上海节能, 2019(4): 262-270. |
[10] | 林景奋, 戴熠, 黄晓武, 等. 废旧轮胎处理及资源化现状研究[J]. 工业安全与环保, 2019, 45(9): 84-87. |
[11] | Leung, D.Y.C. and Wang, C.L. (1998) Kinetic Study of Scrap Tyre Pyrolysis and Combustion. Journal of Analytical and Applied Pyrolysis, 45, 153-169. https://doi.org/10.1016/S0165-2370(98)00065-5 |
[12] | 邱敬贤, 何曦, 戴欣, 等. 废旧轮胎处理技术的研究进展[J]. 中国环保产业, 2020(12): 18-22. |
[13] | 王玉伟, 潘劲松, 苏俊杰, 等. 废旧轮胎高值化利用进展及建议[J]. 山东工业技术, 2020(4): 25-31. |
[14] | 李钊. 我国废旧轮胎资源化现状、问题与对策[J]. 中国轮胎资源综合利用, 2018(12): 41-43. |
[15] | Bockstal, L., Berchem, T., Schmetz, Q., et al. (2019) Devulcanisation and Reclaiming of Tires and Rubber by Physical and Chemical Processes: A Review. Journal of Cleaner Production, 236, Article ID: 117574.
https://doi.org/10.1016/j.jclepro.2019.07.049 |
[16] | Oboirien, B.O. and North, B.C. (2017) A Review of Waste Tyre Gasification. Journal of Environmental Chemical Engineering, 5, 5169-5178. https://doi.org/10.1016/j.jece.2017.09.057 |
[17] | 杨超, 矫庆泽, 冯彩虹, 等. 废旧轮胎催化裂解研究进展[J]. 化工进展, 2022, 41(7): 3877-3889. |
[18] | Jimoda, L.A., Sulaymon, I.D., Alade, A.O., et al. (2018) Assessment of Envi-ronmental Impact of Open Burning of Scrap Tyres on Ambient Air Quality. International Journal of Environmental Sci-ence and Technology, 15, 1323-1330.
https://doi.org/10.1007/s13762-017-1498-5 |
[19] | 姚燕, 崔琪, 赵君, 等. 废旧橡胶应用的新领域[J]. 世界橡胶工业, 2009, 36(5): 40-46. |
[20] | Bhadra, S., De, P.P., Mondal, N., et al. (2003) Regeneration of Carbon Black from Waste Automobile Tires. Journal of Applied Polymer Science, 89, 465-473. https://doi.org/10.1002/app.12019 |
[21] | 李子涵. 基于热重法的煤与轮胎的混燃研究[J]. 能源与环境, 2022(3): 52-55. |
[22] | 晁夫奎, 王玉. 我国废旧轮胎资源化技术应用现状及研究方向[J]. 再生资源与循环经济, 2021, 14(9): 27-29. |
[23] | 田晓龙, 郭磊, 王孔烁, 等. 废旧轮胎循环与资源化利用发展现状[J]. 中国材料进展, 2022, 41(1): 22-29+66-67. |
[24] | 李成, 张斌, 林红, 等. 废轮胎低温热解制油研究[J]. 石油炼制与化工, 2019, 50(2): 27-30. |
[25] | Zhang, X.H., Wang, T.J., Ma, L.L., et al. (2008) Vacuum Pyrolysis of Waste Tires with Basic Additives. Waste Management, 28, 2301-2310. https://doi.org/10.1016/j.wasman.2007.10.009 |
[26] | Czajczyńska, D., Krzy?yńska, R., Jouhara, H., et al. (2017) Use of Pyrolytic Gas from Waste Tire as a Fuel: A Review. Energy, 134, 1121-1131. https://doi.org/10.1016/j.energy.2017.05.042 |
[27] | Yazdani, E., Hashemabadi, S.H. and Taghizadeh, A. (2019) Study of Waste Tire Pyrolysis in a Rotary Kiln Reactor in a Wide Range of Pyrolysis Temperature. Waste Management, 85, 195-201.
https://doi.org/10.1016/j.wasman.2018.12.020 |
[28] | 王慧. 废轮胎热解油的资源化利用研究[D]: [博士学位论文]. 上海: 华东理工大学, 2011. |
[29] | Hu, H.Y., Fang, Y., Liu, H., et al. (2014) The Fate of Sulfur during Rapid Py-rolysis of Scrap Tires. Chemosphere, 97, 102-107. https://doi.org/10.1016/j.chemosphere.2013.10.037 |
[30] | Wang, C., Li, D., Zhai, T.Y., et al. (2019) Direct Conversion of Waste Tires into Three-Dimensional Graphene. Energy Storage Materials, 23, 499-507. https://doi.org/10.1016/j.ensm.2019.04.014 |
[31] | Miguel, S.G., Fowler, G.D. and Sollars, C.J. (2003) A Study of the Characteristics of Activated Carbons Produced by Steam and Carbon Dioxide Activation of Waste Tyre Rubber. Carbon, 41, 1009-1016.
https://doi.org/10.1016/S0008-6223(02)00449-9 |
[32] | Wang, H., Hu, H.Y., Yang, Y.H., et al. (2020) Effect of High Heating Rates on Products Distribution and Sulfur Transformation during the Pyrolysis of Waste Tires. Waste Management, 118, 9-17.
https://doi.org/10.1016/j.wasman.2020.08.015 |
[33] | Chen, K.W. (2014) Manufacture of RDF (Refuse Derived Fuel) by Carbon Ash from the Waste Tire Pyrolysis Resource Chemical Plant. Advanced Materials Research, 852, 764-767.
https://doi.org/10.4028/www.scientific.net/AMR.852.764 |
[34] | Chen, K.W. (2014) The Key-Factor Modulation of Waste Tire Pyrolysis in Resource Chemical Plant for Recovered Fuel Production. Advanced Materials Research, 852, 772-775.
https://doi.org/10.4028/www.scientific.net/AMR.852.772 |
[35] | 蒋智慧, 刘洋, 宋永猛, 等. 废旧轮胎热解及热解产物研究展望[J]. 化工进展, 2021, 40(1): 515-525. |
[36] | Laresgoiti, M.F., Caballero, B.M., de Marco, I., et al. (2004) Characterization of the Liquid Products Obtained in Tyre Pyrolysis. Journal of Analytical and Applied Pyrolysis, 71, 917-934. https://doi.org/10.1016/j.jaap.2003.12.003 |
[37] | 张会亮, 范晓旭, 刘彦丰, 等. 块状废轮胎固定床热解特性实验研究[J]. 可再生能源, 2015, 33(1): 149-153. |
[38] | 季炫宇, 林伟坚, 周雄, 等. 废轮胎热裂解技术研究现状与进展[J]. 化工进展, 2022, 41(8): 4498-4512. |
[39] | Labaki, M. and Jeguirim, M. (2017) Thermochemical Conversion of Waste Tyres—A Review. Environmental Science and Pollution Research International, 24, 9962-9992. https://doi.org/10.1007/s11356-016-7780-0 |
[40] | Policella, M., Wang, Z.W., Burra, K.G., et al. (2019) Characteris-tics of Syngas from Pyrolysis and CO2-Assisted Gasification of Waste Tires. Applied Energy, 254, Article ID: 113678. https://doi.org/10.1016/j.apenergy.2019.113678 |
[41] | 董根全, 杨建丽, 刘振宇. 废轮胎热解油品的组成与硫含量研究[J]. 燃料化学学报, 2000, 28(6): 537-541. |
[42] | Attar, A. (1978) Chemistry, Thermodynamics and Kinetics of Reactions of Sulphur in Coal-Gas Reactions: A Review. Fuel, 57, 201-212. https://doi.org/10.1016/0016-2361(78)90117-5 |
[43] | 金小华, 唐武. 废旧轮胎热裂解技术的研究进展[J]. 中国轮胎资源综合利用, 2022(8): 44-47. |
[44] | Pindoria, R.V., Lim, J.Y., Hawkes, J.E., et al. (1997) Structural Characteri-zationof Biomass Pyrolysis Tars/Oils from Eucalyptus Wood Waste: Effect of H2 Pressure and Sample Configuration. Fuel, 76, 1013-1023.
https://doi.org/10.1016/S0016-2361(97)00092-6 |
[45] | Zhang, H., Xiao, R., Wang, D., et al. (2011) Biomass Fast Pyrolysis in a Fluidized Bed Reactor under N2, CO2, CO, CH4 and H2 Atmospheres. Bioresource Technology, 102, 4258-4264. https://doi.org/10.1016/j.biortech.2010.12.075 |
[46] | Taleb, D.A., Hamid, H.A., Deris, R.R.R., et al. (2020) Insights into Pyrolysis of Waste Tire in Fixed Bed Reactor: Thermal Behavior. Materials Today: Proceedings, 31, 178-186. https://doi.org/10.1016/j.matpr.2020.01.569 |
[47] | 张兴华. 废轮胎固定床真空催化裂解与应用研究[D]: [硕士学位论文]. 广州: 中国科学院广州能源研究所, 2006. |
[48] | 张兴华, 常杰, 王铁军, 等. 碱性条件下废轮胎真空热裂解研究[J]. 燃料化学学报, 2005, 33(6): 713-716. |
[49] | Lopez, G., Olazar, M., Aguado, R., et al. (2010) Vacuum Pyrolysis of Wastetires by Continuously Feeding into a Conical Spouted Bed Reactor. Industrial & Engineering Chemistry Research, 49, 8990-8997.
https://doi.org/10.1021/ie1000604 |
[50] | de Oliveira Neto, G.C., Chaves, L.E.C., Pinto, L.F.R., et al. (2019) Eco-nomic, Environmental and Social Benefits of Adoption of Pyrolysis Process of Tires: A Feasible and Ecofriendly Mode to Reduce the Impacts of Scrap Tires in Brazil. Sustainability, 11, Article 2076. https://doi.org/10.3390/su11072076 |
[51] | Karagoz, M., Uysal, C., Agbulut, U. and Saridemir, S. (2020) Energy, Exergy, Economic and Sustainability Assessments of a Compression Ignition Diesel Engine Fueled with Tire Pyrolytic Oil-Diesel Blends. Journal of Cleaner Production, 264, Article ID: 121724. https://doi.org/10.1016/j.jclepro.2020.121724 |
[52] | Shah, S.A.Y., Zeeshan, M., Farooq, M.Z., et al. (2019) Co-Pyrolysis of Cotton Stalk and Waste Tire with a Focus on Liquid Yield Quantity and Quality. Renewable Energy, 130, 238-244. https://doi.org/10.1016/j.renene.2018.06.045 |
[53] | Jin, L.E., Wang, L.L., Su, L., et al. (2012) Characteris-tics of Gases from Co-Pyrolysis of Sawdust and Tires. International Journal of Green Energy, 9, 719-730. https://doi.org/10.1080/15435075.2011.625585 |
[54] | 吴凯, 朱锦娇, 朱跃钊, 等. 废轮胎与生物质共热解特性研究[J]. 林产化学与工业, 2018, 38(5): 53-60. |
[55] | 王俊芝. 废轮胎与机油共裂解实验研究[D]: [硕士学位论文]. 青岛: 青岛理工大学, 2018. |
[56] | 畅志兵, 王楚楚, 王依宁, 等. 桦甸油页岩和废轮胎的共热解反应行为及协同效应[J/OL]. 矿业科学学报: 1-9.
https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=KYKX20221116007&uniplatform=NZKPT&v=6w1-QLbHRf3jLncp3b-7sOAFgPGX6i4Lorjt6lFR4trcYmw-Cu64X7AOh9s4v7qK, 2022-12-16. |
[57] | 楚雅杰, 仪垂杰, 陈贺, 等. 催化裂解废旧轮胎的试验研究[J]. 科学技术与工程, 2017, 17(15): 213-217. |
[58] | 张兴华, 常杰, 王铁军, 等. 真空条件下金属氧化物催化废轮胎热解研究[J]. 能源工程, 2006(1): 41-45. |
[59] | Hijazi, A., Boyadjian, C., Ahmad, M.N. and Zeaiter, J. (2018) Solar Pyrolysis of Waste Rubber Tires Us-ing Photoactive Catalysts. Waste Management, 77, 10-21. https://doi.org/10.1016/j.wasman.2018.04.044 |
[60] | Tian, X.L., Han, S., Wang, K.S., et al. (2022) Waste Resource Utilization: Spent FCC Catalyst-Based Composite Catalyst for Waste Tire Pyrolysis. Fuel, 328, Article ID: 125236. https://doi.org/10.1016/j.fuel.2022.125236 |
[61] | Yang, C., Fu, R.R., Jiao, Q.Z., et al. (2022) Catalytic Cracking of Waste Tires Using Nano-ZSM-5/MgAl-LDO. Energy Technology, 10, Article ID: 2200186. https://doi.org/10.1002/ente.202200186 |
[62] | Olazar, M., Arabiourrutia, M., López, G., et al. (2008) Effect of Acid Catalysts on Scrap Tyre Pyrolysis under Fast Heating Conditions. Journal of Analytical and Applied Pyrolysis, 82, 199-204.
https://doi.org/10.1016/j.jaap.2008.03.006 |
[63] | Kordoghli, S., Paraschiv, M., Kuncser, R., et al. (2017) Catalysts’ Influence on Thermochemical Decomposition of Waste Tires. Environmental Progress & Sustainable Energy, 36, 1560-1567. https://doi.org/10.1002/ep.12605 |
[64] | 王学通. 废轮胎盐浴热解制取燃料油的研究[D]: [硕士学位论文]. 天津: 河北工业大学, 2008. |
[65] | 唐华. 废轮胎热解炭熔盐热处理除杂提质机理研究[D]: [硕士学位论文]. 武汉: 华中科技大学, 2021. |
[66] | Xu, S.H., Yang, F., Hu, H.Y., et al. (2021) Investigation and Improvement of the Desulfurization Performance of Molten Carbonates under the Influence of Typical Pyrolysis Gases. Waste Management, 124, 46-53.
https://doi.org/10.1016/j.wasman.2021.01.029 |
[67] | Undri, A., Meini, S., Rosi, L., et al. (2013) Microwave Pyroly-sis of Polymeric Materials: Waste Tires Treatment and Characterization of the Value-Added Products. Journal of Analyt-ical and Applied Pyrolysis, 103, 149-158.
https://doi.org/10.1016/j.jaap.2012.11.011 |
[68] | Wang, B., Zheng, H.B., Zeng, D.W., et al. (2021) Microwave Fast Pyrolysis of Waste Tires: Effect of Microwave Power on Product Composition and Quality. Journal of Analytical & Ap-plied Pyrolysis, 155, Article ID: 104979.
https://doi.org/10.1016/j.jaap.2020.104979 |
[69] | 周龙. 轮胎胶粉微波热解特性试验研究[D]: [硕士学位论文]. 济南: 山东大学, 2014. |
[70] | 杨亚青. 废轮胎微波热解过程及产物分布特性试验研究[D]: [硕士学位论文]. 济南: 山东大学, 2017. |
[71] | 韩元凯. 溶胀改性强化废轮胎微波热解特性研究[D]: [硕士学位论文]. 济南: 山东大学, 2021. |
[72] | 唐兰, 黄海涛, 郝海青, 等. 废轮胎粉等离子体热解过程中硫的分布与转化初步研究[J]. 环境污染与防治, 2010, 32(3): 5-8+13. |
[73] | 唐兰, 黄海涛, 赵矿美, 等. 废轮胎等离子体热解固体产物性质研究[J]. 四川环境, 2014, 33(3): 24-29. |
[74] | Chang, J.S., Gu, B.W., Looy, P.C., et al. (1997) Thermal Plasma Pyrolysis of Used Old Tires for Production of Syngas. Fuel and Energy Abstracts, 38, 41-42. https://doi.org/10.1016/S0140-6701(97)80326-8 |
[75] | Huang, H. and Tang, L. (2008) Pyrolysis Treatment of Waste Tire Powder in a Capacitively Coupled RF Plasma Reactor. Energy Conversion and Management, 50, 611-617. https://doi.org/10.1016/j.enconman.2008.10.023 |
[76] | 王文亮, 时宇杰, 王少华, 等. 纤维素与废轮胎微波共热解规律及产物特性[J]. 高等学校化学学报, 2018, 39(5): 964-970. |
[77] | 彭伟超. 螺旋藻与废旧轮胎热解特性及催化共热解作用研究[D]: [硕士学位论文]. 湛江: 广东海洋大学, 2021. |
[78] | Pan, Y.H., Du, X.D., Zhu, C.X., et al. (2022) Degradation of Rubber Waste into Hydrogen Enriched Syngas via Microwave-Induced Catalytic Pyrolysis. In-ternational Journal of Hydrogen Energy, 47, 33966-33978.
https://doi.org/10.1016/j.ijhydene.2022.08.012 |
[79] | Rodriguez, D.A.R., Trejos, O.Y.R. and Vargas, G.J.C. (2019) Evaluation of the Pyrolysis and Co-Pyrolysis Process of Palm Shell and Waste Tyres in a CO2 Atmosphere. Avances: Investigación en Ingeniería, 16, 83-92.
https://doi.org/10.18041/1794-4953/avances.2.5501 |
[80] | 葛晓冬. 超临界水氧化法处理废旧轮胎的实验研究[D]: [硕士学位论文]. 大连: 大连理工大学, 2005. |
[81] | Yan, S., Xia, D.H., Zhang, X.R., et al. (2019) A Complete Depolymerization of Scrap Tire with Supercritical Water Participation: A Molecular Dynamic Simulation Study. Waste Management, 93, 83-90.
https://doi.org/10.1016/j.wasman.2019.05.030 |
[82] | Nanda, S., Reddy, S.N., Hunter, H.N., et al. (2019) Catalytic Subcritical and Supercritical Water Gasification as a Resource Recovery Approach from Waste Tires for Hydrogen-Rich Syngas Production. The Journal of Supercritical Fluids, 154, Article ID: 104647. https://doi.org/10.1016/j.supflu.2019.104627 |
[83] | Li, Q.H., Li, F.X., Meng, A.H., et al. (2018) Thermolysis of Scrap Tire and Rubber in Sub/Super-Critical Water. Waste Management, 71, 311-319. https://doi.org/10.1016/j.wasman.2017.10.017 |
[84] | Yan, S., Xia, D.H. and Liu, X.J. (2021) Beneficial Migration of Sulfur Element during Scrap Tire Depolymerization with Supercritical Water: A Molecular Dynamics and DFT Study. Science of the Total Environment, 776, Article ID: 145835. https://doi.org/10.1016/j.scitotenv.2021.145835 |
[85] | 牛斌. 废轮胎热裂解行业技术难题、技术创新及产业化应用[J]. 中国轮胎资源综合利用, 2020(11): 36-39. |