全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

低温、低氧对肥胖的影响及机制研究进展
Research Progress on the Effect and Mechanism of Hypothermia and Hypoxia on Obesity

DOI: 10.12677/ACM.2023.132183, PP. 1327-1331

Keywords: 低温,低氧,肠道菌群,肥胖
Low Temperature
, Hypoxia, Intestinal Flora, Obesity

Full-Text   Cite this paper   Add to My Lib

Abstract:

肥胖是由遗传和环境等因素共同作用而导致的慢性代谢性疾病,是21世纪最具挑战性的公共卫生问题之一。全球的肥胖患病率呈明显的上升趋势,根据最新的流行病学调查显示,肥胖的患病率存在显著的地理差异,高海拔地区的肥胖患病率明显低于平原地区。很少有人研究高原环境暴露对肥胖的影响,最近有人提出了低温、低氧等因素作为一种新型减肥策略,学者们对其研究还处于初步探究阶段,尚未完全阐明。本文检索了当前的相关文献,总结了低温、低氧等因素对肥胖的影响及机制相关最新研究,支持低温、低氧因素可能是调节肥胖的观点。
Obesity is a chronic metabolic disease caused by genetic and environmental factors. It is one of the most challenging public health problems in the 21st century. The prevalence of obesity in the world shows an obvious upward trend. According to the latest epidemiological survey, there are signifi-cant geographical differences in the prevalence of obesity. The prevalence of obesity in high-altitude areas is significantly lower than that in plain areas. Few people have studied the impact of high al-titude environmental exposure on obesity. Recently, some people have proposed low temperature, hypoxia and other factors as a new weight loss strategy. Scholars’ research on it is still in the pre-liminary exploration stage, and has not been fully clarified. This paper searched the current rele-vant literature, summarized the latest research on the effects and mechanisms of hypothermia, hy-poxia and other factors on obesity, and supported the view that hypothermia, hypoxia and other factors may regulate obesity.

References

[1]  World Health Organization (2021) Obesity and Overweight. http://www.who.int/mediacentre/factsheets/fs311/en/
[2]  Voss, J.D., Masuoka, P., Webber, B.J., Scher, A.I. and At-kinson, R.L. (2013) Association of Elevation, Urbanization and Ambient Temperature with Obesity Prevalence in the United States. International Journal of Obesity, 37, 1407-1412.
https://doi.org/10.1038/ijo.2013.5
[3]  McKie, G.L., Shamshoum, H., Hunt, K.L., et al. (2022) Intermittent Cold Exposure Improves Glucose Homeostasis Despite Exacerbating Diet-Induced Obesity in Mice Housed at Thermoneutral-ity. The Journal of Physiology, 600, 829-845.
https://doi.org/10.1113/JP281774
[4]  Mekjavic, I.B., Amon, M., K?leg?rd, R., et al. (2016) The Effect of Normobaric Hypoxic Confinement on Metabolism, Gut Hormones, and Body Composition. Frontiers in Physiology, 7, Article 202.
https://doi.org/10.3389/fphys.2016.00202
[5]  McMillan, A.C. and White, M.D. (2015) Induction of Thermo-genesis in Brown and Beige Adipose Tissues: Molecular Markers, Mild Cold Exposure and Novel Therapies. Current Opinion in Endocrinology & Diabetes and Obesity, 22, 347-352.
https://doi.org/10.1097/MED.0000000000000191
[6]  Zhu, H., Zhong, L., Li, J., Wang, S. And Qu, J. (2021) Differential Expression of Metabolism-Related Genes in Plateau Pika (Ochotona curzoniae) at Different Altitudes of Qinghai—Tibet Plateau. Frontiers in Genetics, 12, Article 784811.
https://doi.org/10.3389/fgene.2021.784811
[7]  Zhu, P., Zhang, Z.-H., Huang, X.-F., et al. (2018) Cold Expo-sure Promotes Obesity and Impairs Glucose Homeostasis in Mice Subjected to a High-Fat Diet. Molecular Medicine Re-ports, 18, 3923-3931.
https://doi.org/10.3892/mmr.2018.9382
[8]  Brychta, R.J., Huang, S., Wang, J., et al. (2019) Quantification of the Capacity for Cold-Induced Thermogenesis in Young Men with and without Obesity. The Journal of Clinical Endocri-nology & Metabolism, 104, 4865-4878.
https://doi.org/10.1210/jc.2019-00728
[9]  Palmer, B.F. and Clegg, D.J. (2014) Ascent to Altitude as a Weight Loss Method: The Good and Bad of Hypoxia Inducible Factor Activation. Obesity, 22, 311-317.
https://doi.org/10.1002/oby.20499
[10]  Suresh, S., Rajvanshi, P.K. and Noguchi, C.T. (2020) The Many Facets of Erythropoietin Physiologic and Metabolic Response. Frontiers in Physiology, 10, Article 1534.
https://doi.org/10.3389/fphys.2019.01534
[11]  Voss, J.D., Allison, D.B., Webber, B.J., Otto, J.L. and Clark, L.L. (2014) Lower Obesity Rate during Residence at High Altitude among a Military Population with Frequent Migration: A Quasi Experimental Model for Investigating Spatial Causation. PLOS ONE, 9, e93493.
https://doi.org/10.1371/journal.pone.0093493
[12]  Lu, Y., Feng, L., Xie, M., et al. (2016) Hypoxic Living and Ex-ercise Training Alter Adipose Tissue Leptin/Leptin Receptor in Rats. Frontiers in Physiology, 7, Article 554.
https://doi.org/10.3389/fphys.2016.00554
[13]  Lippl, F.J., Neubauer, S., Schipfer, S., et al. (2010) Hypobaric Hy-poxia Causes Body Weight Reduction in Obese Subjects. Obesity, 18, 675-681.
https://doi.org/10.1038/oby.2009.509
[14]  H?gel, J. and Netzer, N.C. (2015) Hannes Gatterer Sven Haacke b Martin Burtscher Martin Faulhaber Andreas Melmerc Christoph Ebenbichler c Kingman P. Strohl d.
[15]  Debevec, T. (2017) Hypoxia-Related Hormonal Appetite Modulation in Humans during Rest and Exercise: Mini Review. Frontiers in Physiology, 8, Article 366.
https://doi.org/10.3389/fphys.2017.00366
[16]  Davis, C.D. (2016) The Gut Microbi-ome and Its Role in Obesity. Nutrition Today, 51, 167-174.
https://doi.org/10.1097/NT.0000000000000167
[17]  Lan, D., Ji, W., Lin, B., et al. (2017) Correlations between Gut Microbiota Community Structures of Tibetans and Geography. Scientific Reports, 7, Article No. 16982.
https://doi.org/10.1038/s41598-017-17194-4
[18]  Suzuki, T.A, Phifer-Rixey, M., Mack, K.L., et al. (2019) Host Genetic Determinants of the Gut Microbiota of Wild Mice. Molecular Ecology, 28, 3197-3207.
https://doi.org/10.1111/mec.15139
[19]  Wang, F., Zhang, H., Xu, T., Hu, Y. and Jiang, Y. (2022) Acute Exposure to Simulated High-Altitude Hypoxia Alters Gut Microbiota in Mice. Archives of Microbiology, 204, Article No. 412.
https://doi.org/10.1007/s00203-022-03031-4
[20]  Wang, F., Zou, J., Xu, H., et al. (2022) Effects of Chronic In-termittent Hypoxia and Chronic Sleep Fragmentation on Gut Microbiome, Serum Metabolome, Liver and Adipose Tissue Morphology. Frontiers in Endocrinology, 13, Article 820939.
https://doi.org/10.3389/fendo.2022.820939
[21]  Wu, Q., Liang, X., Wang, K., et al. (2021) Intestinal Hypoxia-Inducible Factor 2α Regulates Lactate Levels to Shape the Gut Microbiome and Alter Thermogenesis. Cell Metabolism, 33, 1988-2003.
https://doi.org/10.1016/j.cmet.2021.07.007
[22]  Zi?tak, M., Kovatcheva-Datchary, P., Markiewicz, L.H., et al. (2016) Altered Microbiota Contributes to Reduced Diet-Induced Obesity upon Cold Exposure. Cell Metabolism, 23, 1216-1223.
https://doi.org/10.1016/j.cmet.2016.05.001

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133