|
基于关联规则——LSTM神经网络模型的“能源双碳数智”平台满意度分析
|
Abstract:
“能源双碳数智”平台是能源新形势政策背景下,为政府机构、电网公司、企业、能源服务商等市场主要客户群体提供实现全方位碳监测与计量、多维度碳分析与评估、综合性碳资产管理、个性化碳账户与减排等服务的一体化智慧管控数字平台。该平台助力碳达峰、碳中和进程。在此背景下,本文首先基于ACSI模型建立平台满意度评价指标体系,借助关联规则——LSTM神经网络模型得出评价数据,对评价结果进行全面、详尽、客观的分析,为政府部门及企业提供客观、科学的数据分析资料,就如何推进“能源双碳数智”平台运行,提出一些具有推广价值的可行性经验。
Under the background of the new energy situation and policies, the “Energy Dual Carbon Digital In-telligence” platform provides government agencies, power grid companies, enterprises, energy service providers and other major customer groups in the market with an integrated intelligent management and control digital platform to achieve all-round carbon monitoring and measurement, multi-dimensional carbon analysis and assessment, comprehensive carbon asset management, personalized carbon account and emission reduction and other services. The platform facilitates the process of carbon peaking and carbon neutrality. In this context, this paper first establishes a platform satisfaction evaluation index system based on the ACSI model, obtains the evaluation data with the help of the association rule—LSTM neural network model, conducts a comprehensive, detailed and objective analysis of the evaluation results, provides objective and scientific data analysis data for government departments and enterprises, and puts forward some feasible experience with promotion value on how to promote the operation of the “energy dual carbon digital intelligence” platform.
[1] | 陈赟, 刘昌维, 潘智俊, 王晓慧, 李永庆, 李琳. 新形势下智慧“能源 + 双碳”服务平台的建设与应用[J]. 供用电, 2022, 39(2): 15-21. |
[2] | 周吉, 许自豪, 刘熙, 李杰玲. 江西构建“数智控碳”平台体系的思考与建议[J]. 中国国情国力, 2022(6): 40-44. |
[3] | 胡熠, 靳曙畅. 数字技术助力“双碳”目标实现: 理论机制与实践路径[J]. 财会月刊, 2022(6): 111-118. |
[4] | 田珂. 基于聚类关联规则神经网络组合算法初速预测[J/OL]. 兵工学报, 1-12.
http://www.co-journal.com/CN/10.12382/bgxb.2021.0687, 2022-12-29. |
[5] | 肖岚. 基于LSTM网络的经营性租赁固定资产实物期权定价预测研究[J]. 武汉船舶职业技术学院学报, 2022, 21(4): 125-127+132. |
[6] | 杨敬武. 基于关联规则与神经网络的滑坡危险性评价模型及应用研究[D]: [硕士学位论文]. 武汉: 华中科技大学, 2020. |