全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

肠道微生物与骨骼健康
Gut Microbiota and Bone

DOI: 10.12677/ACM.2023.132180, PP. 1308-1314

Keywords: 肠道菌群,骨代谢,骨质疏松,益生菌,益生元
Gut Microbiota
, Bone Metabolism, Osteoporosis, Probiotics, Prebiotics

Full-Text   Cite this paper   Add to My Lib

Abstract:

肠道菌群是人体最大的生态系统,是居住在机体肠道内的一群共生细菌、真菌、病毒的总称。大量的研究已经证实,其在调控人体重要的生理过程和众多复杂疾病的机制中发挥着关键作用。本文将结合近年来的研究进展及热点,综述肠道菌群调控骨代谢的各种潜在机制,通过阐述肠道菌群对各种生物学过程的调节作用,包括营养吸收和肠粘膜屏障、免疫系统功能、激素环境和代谢产物,来全面总结肠道微生物群和骨代谢之间的关系,本文还将综述以肠道菌群为目标,维持骨骼稳态,预防和治疗骨质疏松症的新思路和靶点。
Gut microbiota is the largest ecosystem of the human body consisting of bacteria, fungi, and viruses that colonize human intestine. Numerous studies have confirmed that gut microbiota plays a key role in the regulation of a wide variety of biological processes and the pathogenic mechanism of many complex diseases. In this review, we summarize various potential mechanisms of gut micro-biota about how to affect bone metabolism including nutrients absorption, intestinal mucosal bar-rier, immune system, hormone and gut microbial excretion by products. This paper also describes those microbiota important for the regulation of bone metabolism may serve as novel therapeutic targets to maintaining bone homeostasis, preventing and treating osteoporosis.

References

[1]  Sj?gren, K., Engdahl, C., Henning, P., et al. (2012) The Gut Microbiota Regulates Bone Mass in Mice. Journal of Bone and Mineral Research, 27, 1357-1367.
https://doi.org/10.1002/jbmr.1588
[2]  Wang, J., Wang, Y., Gao, W., et al. (2017) Diversity Analysis of Gut Microbiota in Osteoporosis and Osteopenia Patients. PeerJ, 15, 3450-3450.
https://doi.org/10.7717/peerj.3450
[3]  Charbonneau, M.R., O’Donnell, D., Blanton, L.V., et al. (2016) Sialylated Milk Oligosaccharides Promote Microbiota-Dependent Growth in Models of Infant Undernutrition. Cell, 164, 859-871.
https://doi.org/10.1016/j.cell.2016.01.024
[4]  Cox, L.M., Yamanishi, S., Sohn, J., et al. (2014) Altering the Intes-tinal Microbiota during a Critical Developmental Window Has Lasting Metabolic Consequences. Cell, 158, 705-721.
https://doi.org/10.1016/j.cell.2014.05.052
[5]  DeSelm, C.J., Takahata, Y., Warren, J., et al. (2012) IL-17 Mediates Estrogen-Deficient Osteoporosis in an Act1- Dependent Manner. Journal of Cellular Biochemistry, 113, 2895-2902.
https://doi.org/10.1002/jcb.24165
[6]  Tyagi, A.M., Mansoori, M.N., Srivastava, K., et al. (2014) Enhanced Im-munoprotective Effects by Anti-IL-17 Antibody Translates to Improved Skeletal Parameters under Estrogen Deficiency Compared with Anti-RANKL and Anti-TNF-α Anti-Bodies. Journal of Bone and Mineral Research, 29, 1981-1992.
https://doi.org/10.1002/jbmr.2228
[7]  Atarashi, K., et al. (2011) Induction of Colonic Regulatory T Cells by In-digenous Clostridium Species. Science, 331, 337-341.
https://doi.org/10.1126/science.1198469
[8]  Dar, H.Y., Pal, S., Shukla, P., et al. (2018) Bacillus clausii Inhibits Bone Loss by Skewing Treg-Th17 Cell Equilibrium in Postmeno-pausal Osteoporotic Mice Model. Nutrition, 54, 118-128.
https://doi.org/10.1016/j.nut.2018.02.013
[9]  Dar, H.Y., Shukla, P., Mishra, P.K., et al. (2018) Lactobacillus acidophilus Inhibits Bone Loss and Increases Bone Heterogeneity in Osteoporotic Mice via Modulating TregTh17 Cell Balance. Bone Reports, 5, 46-56.
https://doi.org/10.1016/j.bonr.2018.02.001
[10]  Yang, S., Takahashi, N.T., Sato, N., et al. (2005) Muramyl Dipep-tide Enhances Osteoclast Formation Induced by Lipopolysaccharide, IL-1α, and TNF-α through Nucleotide-Binding Oli-gomerization Domain 2-Mediated Signaling in Osteoblasts. Immunology, 175, 1956-1964.
https://doi.org/10.4049/jimmunol.175.3.1956
[11]  Cullender, T.C., Chassaing, B., Janzon, A., et al. (2013) Innate and Adaptive Immunity Interact to Quench Microbiome Flagellar Motility in the Gut. Cell Host & Microbe, 14, 571-581.
https://doi.org/10.1016/j.chom.2013.10.009
[12]  Vijay-Kumar, M., Aitken, J.D., Carvalho, F.A., et al. (2010) Metabolic Syndrome and Altered Gut Microbiota in Mice Lacking Toll-Like Receptor 5. Science, 328, 228-231.
https://doi.org/10.1126/science.1179721
[13]  Chaplin, A., Parra, P., Laraichi, S., Serra, F. and Palou, A. (2016) Calcium Supplementation Modulates Gut Microbiota in a Prebiotic Manner in Dietary Obese Mice. Molecular Nutrition & Food Research, 60, 468-480.
https://doi.org/10.1002/mnfr.201500480
[14]  Jones, M.L., Martoni, C.J. and Prakash, S. (2013) Oral Supplemen-tation with Probiotic L. reuteri NCIMB 30242 Increases Mean Circulating 25-Hydroxyvitamin D: A Post Hoc Analysis of a Randomized Controlled Trial. The Journal of Clinical Endocrinology & Metabolism, 98, 944-2951.
https://doi.org/10.1210/jc.2012-4262
[15]  Wu, S., Zhang, Y.G., Lu, R., et al. (2015) Intestinal Epithelial Vitamin D Receptor Deletion Leads to Defective Autophagy in Colitis. Gut, 64, 1082-1094.
https://doi.org/10.1136/gutjnl-2014-307436
[16]  R?nn, S.H., Harsl?f, T., Pedersen, S.B. and Langdahl, B.L. (2016) Vitamin K2 (Menaquinone-7) Prevents Age-Related Deterioration of Trabecular Bone Microarchitecture at the Tibia in Postmenopausal Women. European Journal of Endocrinology, 175, 541-549.
https://doi.org/10.1530/EJE-16-0498
[17]  Emaus, N., Gjesdal, C.G., Alm?s, B., et al. (2010) Vitamin K2 Supple-mentation Does Not Influence Bone Loss in Early Menopausal Women: A Randomised Double-Blind Place-bo-Controlled Trial. Osteoporosis International, 21, 1731-1740.
https://doi.org/10.1007/s00198-009-1126-4
[18]  Guss, J.D., Taylor, E., Rouse, Z., et al. (2019) The Microbial Metagenome and Bone Tissue Composition in Mice with Microbiome-Induced Reductions in Bone Strength. Bone, 127, 146-154.
https://doi.org/10.1016/j.bone.2019.06.010
[19]  Hijazi, Z., Molla, A.M., Al-Habashi, H., et al. (2004) Intestinal Permeability Is Increased in Bronchial Asthma. Archives of Disease in Childhood, 89, 227-229.
https://doi.org/10.1136/adc.2003.027680
[20]  Hamilton, M.K., Boudry, G., Lemay, D.G. and Raybould, H.E. (2015) Changes in Intestinal Barrier Function and Gut Microbiota in High-Fat Diet-Fed Rats Are Dynamic and Region Dependent. American Journal of Physiology-Gastrointestinal and Liver Physiology, 308, G840-G851.
https://doi.org/10.1152/ajpgi.00029.2015
[21]  Smith, B.J., Lerner, M.R., Bu, S.Y., et al. (2006) Systemic Bone Loss and Induction of Coronary Vessel Disease in a Rat Model of Chronic Inflammation. Bone, 38, 378-386.
https://doi.org/10.1016/j.bone.2005.09.008
[22]  Smiricky-Tjardes, M.R., Grieshop, C.M., Flickinger, E.A., Bauer, L.L. and Fahey Jr., G.C. (2003) Dietary Galactooligosaccharides Affect Ileal and Total-Tract Nutrient Digestibility, Ileal and Fecal Bacterial Concentrations, and Ileal Fermentative Characteristics of Growing Pigs. Journal of Animal Science, 81, 2535-2545.
https://doi.org/10.2527/2003.81102535x
[23]  Davie, J.R. (2003) Inhibition of Histone Deacetylase Activity by Butyrate. The Journal of Nutrition, 133, 2485-2493.
https://doi.org/10.1093/jn/133.7.2485S
[24]  Sanford, J.A., et al. (2016) Inhibition of HDAC8 and HDAC9 by Mi-crobial Short-Chain Fatty Acids Breaks Immune Tolerance of the Epidermis to TLR Ligands. Science Immunology, 1, eaah4609.
https://doi.org/10.1126/sciimmunol.aah4609
[25]  Li, J.-Y., Chassaing, B., Tyagi, A.M., et al. (2016) Sex Steroid Deficiency-Associated Bone Loss Is Microbiota Dependent and Prevented by Probiotics. Journal of Clinical Investiga-tion, 126, 2049-2063.
https://doi.org/10.1172/JCI86062
[26]  Sobel, V., Schwartz, B., Zhu, Y.-S., Cordero, J.J. and Imperato-McGinley, J. (2006) Bone Mineral Density in the Complete Androgen Insensitivity and 5α-Reductase-2 Deficiency Syndromes. The Journal of Clinical Endocrinology & Metabolism, 91, 3017-3023.
https://doi.org/10.1210/jc.2005-2809
[27]  Finkelstein, J.S., Lee, H., Leder, B.Z., et al. (2016) Gonadal Ster-oid-Dependent Effects on Bone Turnover and Bone Mineral Density in Men. Journal of Clinical Investigation, 126, 1114-1125.
https://doi.org/10.1172/JCI84137
[28]  Jones, S.E., Whitehead, K., Saulnier, D., Thomas, C.M., Versalovic, J. and Britton, R.A. (2011) Cyclopropane Fatty Acid Synthase Mutants of Probiotic Human-Derived Lacto-bacillus reuteri Are Defective in TNF Inhibition. Gut Microbes, 2, 69-79.
https://doi.org/10.4161/gmic.2.2.15282
[29]  Thomas, C.M., Hong, T., van Pijkeren, J.P., et al. (2012) Histamine Derived from Probiotic Lactobacillus Reuteri Suppresses TNF via Modulation of PKA and ERK Signaling. PLOS ONE, 7, e31951.
https://doi.org/10.1371/journal.pone.0031951
[30]  Abrams, S.A., Griffin, I.J., Hawthorne, K.M., et al. (2005) A Combination of Prebiotic Short- and Long-Chain Inulin-Type Fructans Enhances Calcium Absorption and Bone Miner-alization in Young Adolescents. The American Journal of Clinical Nutrition, 82, 471-476.
https://doi.org/10.1093/ajcn/82.2.471
[31]  Slevin, M.M., Allsopp, P.J., Magee, P.J., et al. (2014) Supplementation with Calcium and Short-Chain Fructo-Oligo- saccharides Affects Markers of Bone Turnover But Not Bone Mineral Density in Postmenopausal Women. The Journal of Nutrition, 144, 297-304.
https://doi.org/10.3945/jn.113.188144
[32]  Mei, F., Meng, K., et al. (2021) Arecanut (Areca catechu L.) Seed Pol-yphenol-Ameliorated Osteoporosis by Altering Gut Microbiome via LYZ and the Immune System in Estrogen-Deficient Rats. Journal of Agricultural and Food Chemistry, 69, 246-258.
https://doi.org/10.1021/acs.jafc.0c06671
[33]  Devareddy, L., Khalil, D.A., Korlagunta, K., et al. (2006) The Effects of Fructo-Oligosaccharides in Combination with Soy Protein on Bone in Osteopenic Ovariectomized Rats. Menopause, 13, 692-699.
https://doi.org/10.1097/01.gme.0000195372.74944.71

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133