全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

细胞间相互作用在血管钙化发病机制中的研究进展
Research Progress of Intercellular Interaction in the Pathogenesis of Vascular Calcification

DOI: 10.12677/ACM.2022.132169, PP. 1223-1230

Keywords: 内皮细胞,血管平滑肌细胞,钙化,外泌体
Endothelial Cells
, Vascular Smooth Muscle Cells, Calcification, Exosomes

Full-Text   Cite this paper   Add to My Lib

Abstract:

血管钙化是目前心血管疾病的重要危险因素。内皮细胞(ECs)和血管平滑肌细胞(VSMCs)在这一过程中发挥着重要的作用。在炎症、剪切应力、高磷、高糖等刺激下,VSMCs会发生成骨样分化,促进钙化的形成,这是血管钙化过程中的关键环节。同时,内皮细胞、巨噬细胞、周细胞等在炎症、高磷、高糖等刺激下发挥促VSMCs钙化的作用。本文主要以血管钙化中VSMCs成骨样分化及ECs、周细胞、巨噬细胞发挥促VSMCs钙化的机制展开概述。
Vascular calcification is an important risk factor for cardiovascular diseases. Endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) play an important role in this process. Under the stimu-lation of inflammation, shear stress, high phosphorus and high glucose, VSMCs will undergo osteo-genic differentiation and promote the formation of calcification, which is a key link in the process of vascular calcification. At the same time, endothelial cells, macrophages and pericytes play a role in promoting the calcification of VSMCs under the stimulation of inflammation, high phosphorus and high glucose. In this paper, the osteogenic differentiation of VSMCs in vascular calcification and the mechanism of ECs, pericytes and macrophages in promoting VSMCs calcification were summarized.

References

[1]  Sánchez-Duffhues, G., García de Vinuesa, A., van de Pol, V., et al. (2019) Inflammation Induces Endothelial-to- Mes-enchymal Transition and Promotes Vascular Calcification through Downregulation of BMPR2. The Journal of Pathology, 247, 333-346.
https://doi.org/10.1002/path.5193
[2]  Nicoll, R. and Henein, M.Y. (2014) The Predictive Value of Arterial and Valvular Calcification for Mortality and Cardiovascular Events. IJC Heart & Vessels, 3, 1-5.
https://doi.org/10.1016/j.ijchv.2014.02.001
[3]  Andrews, J., Psaltis, P.J., Bartolo, B., Nicholls, S.J. and Puri, R. (2018) Coronary Arterial Calcification: A Review of Mechanisms, Promoters and Imaging. Trends in Cardiovascular Medicine, 28, 491-501.
https://doi.org/10.1016/j.tcm.2018.04.007
[4]  Durham, A.L., Speer, M.Y., Scatena, M., Giachelli, C.M. and Sha-nahan, C.M. (2018) Role of Smooth Muscle Cells in Vascular Calcification: Implications in Atherosclerosis and Arterial Stiffness. Cardiovascular Research, 114, 590-600.
https://doi.org/10.1093/cvr/cvy010
[5]  Panh, L., Lairez, O., Ruidavets, J.B., Galinier, M., Carrié, D. and Ferrières, J. (2017) Coronary Artery Calcification: From Crystal to Plaque Rupture. Archives of Cardiovascular Diseases, 110, 550-561.
https://doi.org/10.1016/j.acvd.2017.04.003
[6]  Yuan, C., Ni, L., Zhang, C., Hu, X. and Wu, X. (2021) Vascular Calcification: New Insights into Endothelial Cells. Microvascular Research, 134, Article ID: 104105.
https://doi.org/10.1016/j.mvr.2020.104105
[7]  Hjortnaes, J., New, S.E. and Aikawa, E. (2013) Visualizing Novel Concepts of Cardiovascular Calcification. Trends in Cardiovascular Medicine, 23, 71-79.
https://doi.org/10.1016/j.tcm.2012.09.003
[8]  Rocha-Singh, K.J., Zeller, T. and Jaff, M.R. (2014) Peripheral Arte-rial Calcification: Prevalence, Mechanism, Detection, and Clinical Implications. Catheterization and Cardiovascular In-terventions, 83, E212-E220.
https://doi.org/10.1002/ccd.25387
[9]  齐永芬. 关注血管钙化的基础和临床研究[J]. 中国动脉硬化杂志, 2015, 23(5): 433-436.
[10]  Leopold, J.A. (2015) Vascular Calcification: Mechanisms of Vascular Smooth Muscle Cell Calci-fication. Trends in Cardiovascular Medicine, 25, 267-274.
https://doi.org/10.1016/j.tcm.2014.10.021
[11]  Sinha, S., Iyer, D. and Granata, A. (2014) Embryonic Origins of Human Vascular Smooth Muscle Cells: Implications for in Vitro Modeling and Clinical Application. Cellular and Molecular Life Sciences, 71, 2271-2288.
https://doi.org/10.1007/s00018-013-1554-3
[12]  Golub, E.E. (2011) Biomineralization and Matrix Vesicles in Bi-ology and Pathology. Seminars in Immunopathology, 33, 409-417.
https://doi.org/10.1007/s00281-010-0230-z
[13]  Byon, C.H. and Chen, Y. (2015) Molecular Mechanisms of Vas-cular Calcification in Chronic Kidney Disease: The Link between Bone and the Vasculature. Current Osteoporosis Re-ports, 13, 206-215.
https://doi.org/10.1007/s11914-015-0270-3
[14]  Lian, J.B., Stein, G.S., Javed, A., et al. (2006) Networks and Hubs for the Transcriptional Control of Osteoblastogenesis. Reviews in Endocrine and Metabolic Disorders, 7, 1-16.
https://doi.org/10.1007/s11154-006-9001-5
[15]  凌晓欢, 刘剑. 冠状动脉钙化相关研究进展[J]. 现代医药卫生, 2019, 35(6): 859-861.
[16]  Chen, N.X., O’Neill, K.D. and Moe, S.M. (2018) Matrix Vesicles Induce Calcification of Recipient Vascular Smooth Muscle Cells through Multiple Signaling Pathways. Kidney International, 93, 343-354.
https://doi.org/10.1016/j.kint.2017.07.019
[17]  Jaminon, A., Reesink, K., Kroon, A. and Schurgers, L. (2019) The Role of Vascular Smooth Muscle Cells in Arterial Remodeling: Focus on Calcification-Related Processes. International Journal of Molecular Sciences, 20, Article No. 5694.
https://doi.org/10.3390/ijms20225694
[18]  Chen, W.R., Zhou, Y.J., Yang, J.Q., Liu, F., Zhao, Y.X. and Sha, Y. (2019) Melatonin Attenuates β-Glycerophosphate- Induced Calcifica-tion of Vascular Smooth Muscle Cells via a Wnt1/β-Catenin Signaling Pathway. BioMed Research International, 2019, Article ID: 3139496.
https://doi.org/10.1155/2019/3139496
[19]  Cao, J., Chen, L., Zhong, X., et al. (2020) miR32-5p Promoted Vascular Smooth Muscle Cell Calcification by Upregulating TNFα in the Microenvironment. BMC Immunology, 21, Article No. 3.
https://doi.org/10.1186/s12865-019-0324-x
[20]  朱冬冬. 高糖对内皮–成骨细胞转分化的影响及机制探讨[D]: [博士学位论文]. 南京: 东南大学, 2016.
[21]  Kostina, A., Semenova, D., Kostina, D., et al. (2019) Human Aortic Endothelial Cells Have Osteogenic Notch- Dependent Properties in Co-Culture with Aortic Smooth Muscle Cells. Bio-chemical and Biophysical Research Communications, 514, 462-468.
https://doi.org/10.1016/j.bbrc.2019.04.177
[22]  Hong, L., Du, X., Li, W., Mao, Y., Sun, L. and Li, X. (2018) EndMT: A Promising and Controversial Field. European Journal of Cell Biology, 97, 493-500.
https://doi.org/10.1016/j.ejcb.2018.07.005
[23]  Souilhol, C., Harmsen, M.C., Evans, P.C. and Krenning, G. (2018) Endothelial-Mesenchymal Transition in Atherosclerosis. Cardiovascular Research, 114, 565-577.
https://doi.org/10.1093/cvr/cvx253
[24]  Yang, G. and Wang, R. (2015) H2S and Blood Vessels: An Overview. In: Moore, P. and Whiteman, M., Eds., Chemistry, Biochemistry and Pharmacology of Hydrogen Sulfide. Handbook of Ex-perimental Pharmacology, Vol. 230, Springer, Cham, 85-110.
https://doi.org/10.1007/978-3-319-18144-8_4
[25]  Zhou, Y.-B., Zhou, H., Li, L., et al. (2019) Hydrogen Sulfide Prevents Elastin Loss and Attenuates Calcification Induced by High Glucose in Smooth Muscle Cells through Suppres-sion of Stat3/Cathepsin S Signaling Pathway. International Journal of Molecular Sciences, 20, Article No. 4202.
https://doi.org/10.3390/ijms20174202
[26]  Ying, R., Wang, X.-Q., Yang, Y., et al. (2016) Hydrogen Sulfide Sup-presses Endoplasmic Reticulum Stress-Induced Endothelial-to-Mesenchymal Transition through Src Pathway. Life Sci-ences, 144, 208-217.
https://doi.org/10.1016/j.lfs.2015.11.025
[27]  Liu, F., Fu, P., Fan, W., et al. (2012) Involvement of Parathyroid Hormone-Related Protein in Vascular Calcification of Chronic Haemodialysis Patients. Nephrology, 17, 552-560.
https://doi.org/10.1111/j.1440-1797.2012.01601.x
[28]  Sandoo, A., van Zanten, J.J., Metsios, G.S., Carroll, D. and Kitas, G.D. (2010) The Endothelium and Its Role in Regulating Vascular Tone. Open Cardiovascular Medicine Journal, 4, 302-312.
https://doi.org/10.2174/1874192401004010302
[29]  van Niel, G., D’Angelo, G. and Raposo, G. (2018) Shedding Light on the Cell Biology of Extracellular Vesicles. Nature Reviews Molecular Cell Biology, 19, 213-228.
https://doi.org/10.1038/nrm.2017.125
[30]  Buendía, P., de Oca, A.M., Madue?o, J.A., et al. (2015) Endothelial Microparticles Mediate Inflammation-Induced Vascular Calcification. The FASEB Journal, 29, 173-181.
https://doi.org/10.1096/fj.14-249706
[31]  Tang, R., Gao, M., Wu, M., Liu, H., Zhang, X. and Liu, B. (2012) High Glucose Mediates Endothelial-to-Chondrocyte Transition in Human Aortic Endothelial Cells. Cardiovascular Diabetolo-gy, 11, Article No. 113.
https://doi.org/10.1186/1475-2840-11-113
[32]  Zhang, H., Liu, J., Qu, D., et al. (2018) Serum Exosomes Mediate Delivery of Arginase 1 as a Novel Mechanism for Endothelial Dysfunction in Diabetes. Proceedings of the National Academy of Sciences of the United States of America, 115, E6927-E6936.
https://doi.org/10.1073/pnas.1721521115
[33]  Van den Bergh, G., Opdebeeck, B., D’Haese, P.C. and Verhulst, A. (2019) The Vicious Cycle of Arterial Stiffness and Arterial Media Calcification. Trends in Molecular Medicine, 25, 1133-1146.
https://doi.org/10.1016/j.molmed.2019.08.006
[34]  Jansen, F., Yang, X., Franklin, B.S., et al. (2013) High Glu-cose Condition Increases NADPH Oxidase Activity in Endothelial Microparticles That Promote Vascular Inflammation. Cardiovascular Research, 98, 94-106.
https://doi.org/10.1093/cvr/cvt013
[35]  Kargl, C.K., Nie, Y., Evans, S., et al. (2019) Factors Secreted from High Glucose Treated Endothelial Cells Impair Expansion and Differentiation of Human Skeletal Muscle Satellite Cells. The Journal of Physiology, 597, 5109-5124.
https://doi.org/10.1113/JP278165
[36]  Lin, X., Li, S., Wang, Y.J., et al. (2019) Exosomal Notch3 from High Glu-cose-Stimulated Endothelial Cells Regulates Vascular Smooth Muscle Cells Calcification/Aging. Life Sciences, 232, Arti-cle ID: 116582.
https://doi.org/10.1016/j.lfs.2019.116582
[37]  Lin, X., Shan, S.-K., Xu, F., et al. (2022) The Crosstalk between Endothelial Cells and Vascular Smooth Muscle Cells Aggravates High Phosphorus-Induced Arterial Calcification. Cell Death & Disease, 13, Article No. 650.
https://doi.org/10.1038/s41419-022-05064-5
[38]  Lombardo, G., Dentelli, P., Togliatto, G., et al. (2016) Activated Stat5 Trafficking via Endothelial Cell-Derived Extracellular Vesicles Controls IL-3 Pro-Angiogenic Paracrine Action. Scientific Reports, 6, Article No. 25689.
https://doi.org/10.1038/srep25689
[39]  Hergenreider, E., Heydt, S., Tréguer, K., et al. (2012) Atheroprotective Communication between Endothelial Cells and Smooth Muscle Cells through miRNAs. Nature Cell Biology, 14, 249-256.
https://doi.org/10.1038/ncb2441
[40]  Bostr?m, K.I., Jumabay, M., Matveyenko, A., Nicholas, S.B. and Yao, Y. (2011) Activation of Vascular Bone Morphogenetic Protein Signaling in Diabetes Mellitus. Circulation Research, 108, 446-457.
https://doi.org/10.1161/CIRCRESAHA.110.236596
[41]  Pescatore, L.A., Gamarra, L.F. and Liberman, M. (2019) Multifaceted Mechanisms of Vascular Calcification in Aging. Arteriosclerosis, Thrombosis, and Vascular Biology, 39, 1307-1316.
https://doi.org/10.1161/ATVBAHA.118.311576
[42]  Zhang, C., Zhang, K., Huang, F., et al. (2018) Exosomes, the Message Transporters in Vascular Calcification. Journal of Cellular and Molecular Medicine, 22, 4024-4033.
https://doi.org/10.1111/jcmm.13692
[43]  Bostr?m, K.I. (2016) Where Do We Stand on Vascular Calci-fication. Vascular Pharmacology, 84, 8-14.
https://doi.org/10.1016/j.vph.2016.05.014
[44]  Wu, M., Rementer, C. and Giachelli, C.M. (2013) Vascular Calcifi-cation: An Update on Mechanisms and Challenges in Treatment. Calcified Tissue International, 93, 365-373.
https://doi.org/10.1007/s00223-013-9712-z
[45]  Chen, B., Zhao, Y., Han, D., et al. (2019) Wnt1 Inhibits Vascular Smooth Muscle Cell Calcification by Promoting ANKH Expression. Journal of Molecular and Cellular Cardiology, 135, 10-21.
https://doi.org/10.1016/j.yjmcc.2019.07.008
[46]  Dai, X.-Y., Zhao, M.-M., Cai, Y., et al. (2013) Phos-phate-Induced Autophagy Counteracts Vascular Calcification by Reducing Matrix Vesicle Release. Kidney International, 83, 1042-1051.
https://doi.org/10.1038/ki.2012.482
[47]  Zhang, X., Li, J., Qin, J.J., et al. (2017) Oncostatin M Receptor β Deficiency Attenuates Atherogenesis by Inhibiting JAK2/STAT3 Signaling in Macrophages. Journal of Lipid Research, 58, 895-906.
https://doi.org/10.1194/jlr.M074112
[48]  Kraft, C.T., Agarwal, S., Ranganathan, K., et al. (2016) Trauma-Induced Heterotopic Bone Formation and the Role of the Immune System: A Review. Journal of Trauma and Acute Care Surgery, 80, 156-165.
https://doi.org/10.1097/TA.0000000000000883
[49]  Braga, T.T., Agudelo, J.S. and Camara, N.O. (2015) Macro-phages during the Fibrotic Process: M2 as Friend and Foe. Frontiers in Immunology, 6, Article No. 602.
https://doi.org/10.3389/fimmu.2015.00602
[50]  Villa-Bellosta, R., Hamczyk, M.R. and Andrés, V. (2016) Alterna-tively Activated Macrophages Exhibit an Anticalcifying Activity Dependent on Extracellular ATP/Pyrophosphate Metab-olism. American Journal of Physiology-Cell Physiology, 310, C788-C799.
https://doi.org/10.1152/ajpcell.00370.2015
[51]  周子皓, 李春坚, 王芳. 血管钙化中多种细胞的作用[J]. 心血管康复医学杂志, 2020, 29(5): 611-615.
[52]  Avolio, E., Rodriguez-Arabaolaza, I., Spencer, H.L., et al. (2015) Expan-sion and Characterization of Neonatal Cardiac Pericytes Provides a Novel Cellular Option for Tissue Engineering in Congenital Heart Disease. Journal of the American Heart Association, 4, e002043.
https://doi.org/10.1161/JAHA.115.002043
[53]  严泽振, 沈玲红, 何奔. 血管钙化中成骨样细胞来源及其转化的研究进展[J]. 中国动脉硬化杂志, 2017, 25(11): 1169-1173.
[54]  董谦谦, 颜建云. 血管钙化参与细胞相关研究的新进展[J]. 中国动脉硬化杂志, 2018, 26(11): 1111-1115.
[55]  Kirton, J.P., Wilkinson, F.L., Canfield, A.E. and Alexander, M.Y. (2006) Dexamethasone Downregulates Calcification-Inhibitor Molecules and Accelerates Osteogenic Differentiation of Vascular Pericytes: Implications for Vascular Calcification. Circulation Research, 98, 1264-1272.
https://doi.org/10.1161/01.RES.0000223056.68892.8b

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133