全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于SWI序列的支持向量机模型鉴别高级别胶质瘤与脑内单发转移瘤
Support Vector Machine Model Based on SWI Sequences to Discriminate High-Grade Glio-ma from Intracerebral Solitary Metastases

DOI: 10.12677/ACM.2023.131158, PP. 1146-1153

Keywords: 磁共振成像,高级别胶质瘤,脑单发转移瘤,磁敏感加权成像,影像组学
Magnetic Resonance Imaging
, High-Grade Glioma, Brain Solitary Metastases, Magnetic Sensitivity-Weighted Imaging, Radiomics

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:探讨基于磁敏感加权成像(SWI)序列的支持向量机模型鉴别高级别胶质瘤与脑单发转移瘤的临床价值。方法:回顾性分析经病理确诊的103例高级别胶质瘤及脑单发转移瘤患者的SWI序列图像,在获得的图像上手动勾画感兴趣体积(Region of interest, ROI)并提取影像组学特征,所有病例按照70%:30%分为训练组和验证组,训练组用于筛选特征和建立机器学习模型,特征筛选由独立样本t检验,Mann-Whitney U检验和最小绝对收缩与选择算子(least absolute shrinkage and selection operator, LASSO)完成,特征筛选后的数据建立支持向量机(support vector machine, SVM)模型。应用受试者操作员特征(ROC)曲线评价模型的诊断性能,结果表示为曲线下面积(AUC),准确度、灵敏度、特异度,阳性预测率和阴性预测率。验证组数据用于进一步验证。结果:基于SWI序列建立了鉴别高级别胶质瘤及脑内单发转移瘤的诊断模型。训练组中,模型曲线下面积为0.951,诊断的特异度、灵敏度,准确度,阳性预测率及阴性预测率分别为0.889,0.800,0.857,0.889,0.800。验证组中模型曲线下面积为0.868。特异度、灵敏度,准确度,阳性预测率及阴性预测率分别为0.875,0.889,0.880,0.933,0.800。结论:基于SWI序列的支持向量机模型能有效提高术前鉴别高级别胶质瘤及脑内单发转移瘤的诊断效能。
Objective: To investigate the clinical value of a support vector machine model based on magnetic susceptibility weighted imaging (SWI) sequences to identify high-grade gliomas and solitary brain metastases. Methods: SWI sequences of 103 patients with pathologically confirmed high-grade gliomas and single brain metastases were retrospectively analyzed, and the volume of interest (ROI) was manually outlined on the acquired images and the imaging histological features were extracted, and all cases were divided into a training group and a validation group according to 70%:30%. Feature screening was done by independent sample t-test, Mann-Whitney U-test and least absolute shrinkage and selection operator (LASSO), and support vector machine (SVM) model was built on the data after feature screening. The diagnostic performance of the model was evaluated by apply-ing the subject operator characteristic (ROC) curve, and the results were expressed as area under the curve (AUC), accuracy, sensitivity, specificity, positive prediction rate and negative prediction rate. Validation group data were used for further validation. Results: A diagnostic model based on SWI sequences was established to discriminate high-grade glioma from intracerebral solitary me-tastases. In the training group, the area under the curve of the model was 0.951, and the specificity, sensitivity, accuracy, positive prediction rate and negative prediction rate were 0.889, 0.800, 0.857, 0.889, 0.800, respectively. The area under the model curve in the verification group was 0.868. The specificity, sensitivity, accuracy, positive predictive rate and negative predictive rate were 0.875, 0.889, 0.880, 0.933 and 0.800, respectively. Conclusion: The support vector machine model based on SWI sequences can effectively improve the diagnostic efficacy of preoperative identification of high-grade glioma and intracerebral solitary metastases.

References

[1]  Chen, R., Smith-Cohn, M., Cohen, A.L. and Colman, H. (2017) Glioma Subclassifications and Their Clinical Signifi-cance. Neurotherapeutics, 14, 284-297.
https://doi.org/10.1007/s13311-017-0519-x
[2]  Lah, T.T., Novak, M. and Breznik, B. (2020) Brain Malignancies: Glioblastoma and Brain Metastases. Seminars in Cancer Biology, 60, 262-273.
https://doi.org/10.1016/j.semcancer.2019.10.010
[3]  曲龙, 黄景新. 脑胶质瘤MRI平扫及强化特征分析[J]. 影像技术, 2022, 34(6): 33-38.
[4]  高玉岭, 王帅文, 张艳利, 叶荣, 冯雯, 田水水, 彭建鸿, 郭顺林, 雷军强. 不同病理类型脑转移瘤MRI表现特点[J]. 兰州大学学报(医学版), 2021, 47(2): 65-70.
https://doi.org/10.13885/j.issn.1000-2812.2021.02.012
[5]  Nicholson, J.G. and Fine, H.A. (2021) Diffuse Glio-ma Heterogeneity and Its Therapeutic Implications. Cancer Discovery, 11, 575-590.
https://doi.org/10.1158/2159-8290.CD-20-1474
[6]  Cagney, D.N., Martin, A.M., Catalano, P.J., et al. (2017) In-cidence and Prognosis of Patients with Brain Metastases at Diagnosis of Systemic Malignancy: A Population-Based Study. Neuro-Oncology, 19, 1511-1521.
https://doi.org/10.1093/neuonc/nox077
[7]  Haller, S., Haacke, E.M., Thurnher, M.M. and Barkhof, F. (2021) Susceptibility-Weighted Imaging: Technical Essentials and Clinical Neurologic Applications. Radiology, 299, 3-26.
https://doi.org/10.1148/radiol.2021203071
[8]  Park, M.J., Kim, H.S., Jahng, G.H., et al. (2009) Semiquantitative Assessment of Intratumoral Susceptibility Signals Using Non-Contrast-Enhanced High-Field High-Resolution Suscepti-bility-Weighted Imaging in Patients with Gliomas: Comparison with MR Perfusion Imaging. American Journal of Neu-roradiology, 30, 1402-1408.
https://doi.org/10.3174/ajnr.A1593
[9]  Binczyk, F., Prazuch, W., Bozek, P. and Polanska, J. (2021) Radiomics and Artificial Intelligence in Lung Cancer Screening. Translational Lung Cancer Research, 10, 1186-1199.
https://doi.org/10.21037/tlcr-20-708
[10]  李洁, 刘光耀, 樊凤仙, 胡万均, 白玉萍, 张静. 深度学习和影像组学在脑胶质瘤中的研究进展[J]. 磁共振成像, 2022, 13(4): 158-161.
[11]  张攀, 丁伟伟, 王爱军, 马艳, 李健, 徐梦莹, 陈兵. 酰胺质子转移联合3D动脉自旋标记成像在高级别胶质瘤诊断中的应用[J]. 中国医学影像学杂志, 2022, 30(10): 981-985.
[12]  何永红, 吴景强, 陈茶金, 邱清香. 采用氢质子磁共振波谱鉴别高级别胶质瘤与单发性脑转移瘤的价值分析[J]. 现代医用影像学, 2022, 31(10): 1911-1913.
[13]  李红, 陈满, 黄勇, 彭韧, 李志铭, 谭理连. 3.0 T多体素~1H-MRS在脑胶质瘤与单发脑转移瘤鉴别诊断中的应用分析[J]. 临床放射学杂志, 2022, 41(2): 230-235.
https://doi.org/10.13437/j.cnki.jcr.2022.02.037
[14]  盛强. 关于DWI和ADC值在胶质瘤和颅内单发转移瘤鉴别诊断价值的研究[D]: [硕士学位论文]. 大连: 大连医科大学, 2022.
https://doi.org/10.26994/d.cnki.gdlyu.2022.000164
[15]  Hsu, C.C., Watkins, T.W., Kwan, G.N. and Haacke, E.M. (2016) Susceptibility-Weighted Imaging of Glioma: Update on Current Imaging Status and Future Directions. Journal of Neuroimaging, 26, 383-390.
https://doi.org/10.1111/jon.12360
[16]  Fischer, I., Gagner, J.P., Law, M., Newcomb, E.W. and Zagzag, D. (2005) Angiogenesis in Gliomas: Biology and Molecular Pathophysiology. Brain Pathology, 15, 297-310.
https://doi.org/10.1111/j.1750-3639.2005.tb00115.x
[17]  周新韩, 张仙海, 高明勇, 贺小红, 杨镜全, 杨明燕, 梁雪梅. 高级别胶质瘤和脑转移瘤的SWI研究[J]. 医学影像学杂志, 2015, 25(6): 973-976.
[18]  王娇燕, 孟凡华, 刘魏然, 魏春晓, 林丽萍. SWI在胶质母细胞瘤与单发脑转移瘤鉴别中的价值[J]. 中国临床神经外科杂志, 2018, 23(1): 13-16.
https://doi.org/10.13798/j.issn.1009-153X.2018.01.005
[19]  陈杰云. MR磁敏感加权成像及灌注加权成像在单发脑转移瘤与高级别胶质瘤鉴别诊断中的价值研究[D]: [硕士学位论文]. 福州: 福建医科大学, 2013.
[20]  刘芳. PWI联合SWI在单发脑转移瘤和高级别胶质瘤鉴别诊断的应用价值[J]. 全科口腔医学电子杂志, 2018, 5(33): 10-11.
https://doi.org/10.16269/j.cnki.cn11-9337/r.2018.33.004
[21]  张志军, 赵艳蕊. 灌注加权成像、磁敏感加权成像在高级别脑胶质瘤与单发脑转移瘤鉴别诊断中的价值[J]. 北京医学, 2014, 36(5): 380-383.
https://doi.org/10.15932/j.0253-9713.2014.05.004
[22]  Kim, H.S., Jahng, G.H., Ryu, C.W. and Kim, S.Y. (2009) Added Value and Diagnostic Performance of Intratumoral Susceptibility Signals in the Differential Diagno-sis of Solitary Enhancing Brain Lesions: Preliminary Study. American Journal of Neuroradiology, 30, 1574-1579.
https://doi.org/10.3174/ajnr.A1635
[23]  于艳红. 磁敏感加权成像对脑胶质瘤与单发脑转移瘤鉴别诊断的价值[J]. 临床医药文献电子杂志, 2015, 2(6): 1167-1168+1171.
https://doi.org/10.16281/j.cnki.jocml.2015.06.136
[24]  高茜. 磁敏感加权成像对脑胶质瘤术前分级及与单发脑转移瘤鉴别诊断的价值[D]: [硕士学位论文]. 苏州: 苏州大学, 2013.
[25]  Mayerhoefer, M.E., Materka, A., Langs, G., et al. (2020) Introduction to Radiomics. Journal of Nuclear Medicine, 61, 488-495.
https://doi.org/10.2967/jnumed.118.222893

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133