All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

不同磷酸盐改性生物炭对铅的吸附特征研究
Study on the Adsorption Characteristics of Different Phosphate-Modified Biochars for Lead

DOI: 10.12677/IJE.2023.121001, PP. 1-8

Keywords: 生物炭,磷改性,铅吸附
Biochar
, Phosphate-Modified, Lead Adsorption

Full-Text   Cite this paper   Add to My Lib

Abstract:

磷改性生物炭对铅有很好的钝化效果,但不同溶解性的磷酸盐改性对铅的吸附效果及影响因素尚不清楚。本研究使用未改性、磷酸二氢钾(可溶)和羟基磷灰石(难溶)改性芦苇秸秆制备生物炭BC、BCK和BCCa,研究了三种生物炭对铅的吸附特征。结果表明,Langmuir模型较好地描述三种生物炭对Pb2+的等温吸附趋势,最大吸附量依次为BC (46.5 mg/g) < BCCa (58.5 mg/g) < BCK (59.5 mg/g)。动力学模型拟合结果表明,三种生物炭对Pb2+的吸附不仅与离子交换等化学过程有关,而且受颗粒内扩散共同作用。此外,BC、BCK和BCCa对Pb2+的吸附能力受溶液pH影响,酸性条件下,pH越低吸附能力越弱。综上所述,磷改性增强生物炭对铅的吸附能力,且随吸附时间和吸附质浓度的增加,吸附容量升高。与不溶性磷酸盐改性生物炭相比,可溶性磷酸盐改性生物炭对铅的吸附效果更佳。
Phosphate-modified biochar is effective in passivating lead, but the effect of biochars modified by phosphates with different solubilities on the adsorption of lead and the impact of pH is unknown. In this study, biochar BC, BCK and BCCa were prepared using unmodified, potassium dihydrogen phosphate (soluble) and hydroxyapatite (insoluble) modified reed straws, investigated the ad-sorption characteristics of the three biochars for lead. The results showed that the sorption iso-therms of Pb2+ were better described using the Langmuir model with the maximum adsorption amounts of BC (46.5 mg/g) < BCCa (58.5 mg/g) < BCK (59.5 mg/g) sequentially. The kinetic models fitting results indicated that the adsorption of Pb2+ by the three biochars was associated with a combination of chemical processes (such as ion exchange) and intraparticle diffusion. Additionally, the adsorption capacities of BC, BCK and BCCa for Pb2+ were affected by solution pH, which was weaker with lower pH under acidic conditions. In summary, phosphorous modification enhanced the adsorption of Pb2+ on biochar; moreover, with the increase of adsorption time and adsorbate concentration, the adsorption amount increases. Soluble phosphate-modified biochar was more effective in Pb2+ adsorption compared to insoluble phosphate-modified biochar.

References

[1]  生态环境部, 国土资源部. 全国土壤污染状况调查公报[EB/OL].
http://www.mee.gov.cn/gkml/sthjbgw/qt/201404/W020140417558995804588.pdf, 2014-04-17.
[2]  Chen, L., Xu, Z., Liu, M., et al. (2012) Lead Exposure Assessment from Study near a Lead-Acid Battery Factory in China. Science of the Total Environment, 429, 191-198.
https://doi.org/10.1016/j.scitotenv.2012.04.015
[3]  Tang, J., Zhu, W., Kookana, R. and Katayama, A. (2013) Characteristics of Biochar and Its Application in Remediation of Contaminated Soil. Journal of Bioscience and Bioengineering, 116, 653-659.
https://doi.org/10.1016/j.jbiosc.2013.05.035
[4]  丁苏苏, 李凯华, 黄珏瑛, 等. 含磷材料修复铅、镉污染农田土壤效果及影响因素研究进展[J]. 环境污染与防治, 2020, 42(7): 929-936.
[5]  张学庆, 费宇红, 田夏, 李亚松. 磷改性生物炭对Pb、Cd复合污染土壤的钝化效果[J]. 环境污染与防治, 2017, 39(9): 1017-1020.
[6]  Ahmad, M., Usman, A.R.A., Al-Faraj, A.S., et al. (2018) Phosphorus-Loaded Biochar Changes Soil Heavy Metals Availability and Uptake Potential of Maize (Zea mays L.) Plants. Chemosphere, 194, 327-339.
https://doi.org/10.1016/j.chemosphere.2017.11.156
[7]  Wang, L., Li, Y., Li, H., et al. (2014) Stabilize Lead and Cadmium in Contaminated Soils Using Hydroxyapatite and Potassium Chloride. Environmental Monitoring and As-sessment, 186, 9041-9050.
https://doi.org/10.1007/s10661-014-4064-3
[8]  杨晶, 李丽, 季必霄, 杜成瑜. 生物炭吸附废水中重金属研究进展[J]. 能源环境保护, 2020, 34(6): 1-7.
[9]  张丹, 张世熔, 王新月, 等. 四种植物材料对废水中铅离子的吸附特征[J]. 地球与环境, 2020, 48(6): 711-718.
[10]  Cui, L., Wang, Y., Hu, L., et al. (2015) Mechanism of Pb(II) and Methylene Blue Adsorption onto Magnetic Carbonate Hydroxyapatite/Graphene Oxide. Royal Society of Chemistry Advances, 5, 9759-9770.
https://doi.org/10.1039/C4RA13009J
[11]  Ncibi, M.C., Mahjoub, B. and Seffen, M. (2007) Kinetic and Equilib-rium Studies of Methylene Blue Biosorption by Posidonia oceanica (L.) Fibres. Journal of Hazardous Materials, 139, 280-285.
https://doi.org/10.1016/j.jhazmat.2006.06.029
[12]  Arami, M., Limaee, N.Y. and Mahmoodi, N.M. (2008) Eval-uation of the Adsorption Kinetics and Equilibrium for the Potential Removal of Acid Dyes Using a Biosorbent. Chemical Engineering Journal, 139, 2-10.
https://doi.org/10.1016/j.cej.2007.07.060
[13]  Gao, R., Fu, Q., Hu, H., et al. (2019) Highly-Effective Removal of Pb by Co-Pyrolysis Biochar Derived from Rape Straw and Orthophosphate. Journal of Hazardous Materials, 371, 191-197.
https://doi.org/10.1016/j.jhazmat.2019.02.079
[14]  Javanbakht, V., Ghoreishi, S.M., Habibi, N. and Javanbakht, M. (2016) A Novel Magnetic Chitosan/Clinoptilolite/ Magnetite Nanocomposite for Highly Efficient Removal of Pb(II) Ions from Aqueous Solution. Powder Technology, 302, 372-383.
https://doi.org/10.1016/j.powtec.2016.08.069
[15]  张连科, 王洋, 王维大, 等. 生物炭负载纳米羟基磷灰石复合材料的制备及对铅离子的吸附特性[J]. 化工进展, 2018, 37(9): 3492-3501.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413