全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Na-β''-Al2O3固体电解质的制备与表征
Preparation and Characterization of Na-β''-Al2O3 Solid Electrolytes

DOI: 10.12677/CMP.2022.114008, PP. 65-75

Keywords: 固体电解质,Na-β''-Al2O3,离子电导率
Solid Electrolyte
, Na-β''-Al2O3, Ionic Conductivity

Full-Text   Cite this paper   Add to My Lib

Abstract:

氧化物型钠离子固态电解质Na-β''-Al2O3具有较高的高温离子电导率,并且已经实现了高温环境下的商业化应用。然而,Na-β''-Al2O3的合成通常需要在较高的温度环境下进行,但是高温会造成Na元素的大量挥发损失,使得样品的实际离子电导率降低。因此,如何适量控制Na元素的添加量来弥补烧结过程中的损失是一个重要的课题。在本文中,我们采用固相反应法,通过控制Na2CO3的过量含量(0 wt%, 5 wt%, 10 wt%, 15 wt%, 20 wt%)合成了固态电解质Na2Li0.3Al10.66O17.14。实验发现,与Na2CO3未过量的样品相比,Na2CO3过量15 wt%的样品具有较高的离子电导率(6.93 × 10?4 S/cm),比未过量的样品提高了6倍,相对密度为(97.91%)。
Oxide-based Na-β''-Al2O3 solid electrolytes possess relatively high ionic conductivities at high temperatures, thereby realizing good commercial applications under high temperature environment. However, in most cases, high-temperature are required for the synthesis of Na-β''-Al2O3, the high-temperature synthesis of Na-β''-Al2O3 may lead to the deficiency of Na and then cause the reduction of ionic conductivity. Therefore, how to control the amount of Na element to make up for the loss in sintering process is an important topic. In this study, the solid-state reaction method is used to synthesize Na2Li0.3Al10.66O17.14 solid electrolytes with a series of overdosed Na (0 wt%, 5 wt%, 10 wt%, 15 wt%, and 20 wt%). Their microstructure and electrical properties are comparatively investigated. The results indicate that 15 wt% overdosed Na sample shows the largest relative density (97.91%) and the highest ionic conductivity, 6.93 × 10?4 S/cm, which is 6 times higher than that for the non-overdosed sample.

References

[1]  Hueso, K.B., Armand, M. and Rojo, T. (2013) High Temperature Sodium Batteries: Status, Challenges and Future Trends. Energy & Environmental Science, 6, 734-749.
https://doi.org/10.1039/c3ee24086j
[2]  Benato, R., Cosciani, N., Grugnola, C., Sessa, S.D., Lodi, G., Parmeggiani, C. and Todeschini, M. (2015) Sodium Nickel Chloride Battery Technology for Large-Scale Stationary Storage in the High Voltage Network. Journal of Power Sources, 293, 127-136.
https://doi.org/10.1016/j.jpowsour.2015.05.037
[3]  De Vries, R.C. and Roth, W.L. (1969) Critical Evaluation of the Literature Data on Beta Alumina and Related Phases: I, Phase Equilibria and Characterization of Beta Alumina Phases. Journal of the American Ceramic Society, 52, 364-369.
https://doi.org/10.1111/j.1151-2916.1969.tb11956.x
[4]  Powers, R.W. and Mitoff, S.P. (1975) An Analysis of the Impedance of Polycrystalline Beta-Alumina. Journal of the Electrochemical Society, 122, 226-231.
https://doi.org/10.1149/1.2134183
[5]  Grady, Z., Ndayishimiye, A. and Randal, C. (2021) A Dramatic Reduction in the Sintering Temperature of the Refractory Sodium β''-Alumina Solid Electrolyte via Cold Sintering. Journal of Materials Chemistry A, 9, 22002-22014.
https://doi.org/10.1039/D1TA05933E
[6]  Bay, M-C., Heinz, M.V.F., Figi, R., Schreiner, C., Basso, D., Zanon, N., Vogt, U.F. and Battaglia, C. (2019) Impact of Liquid Phase Formation on Microstructure and Conductivity of Li Stabilized Na-β''-Alumina Ceramics. ACS Applied Energy Materials, 2, 687-693.
https://doi.org/10.1021/acsaem.8b01715
[7]  Yi, E.Y., Temeche, E. and Laine, R.M. (2018) Superionically Conducting β''-Al2O3 Thin Films Processed Using Flame Synthesized Nanopowders. Journal of Materials Chemistry A, 6, 12411-12419.
https://doi.org/10.1039/C8TA02907E
[8]  Dirksen, C.L., Skadell, K., Schulz, M. and Stelter, M. (2019) Effects of TiO2 Doping on Li+-Stabilized Na-β''-Alumina for Energy Storage Applications. Separation and Purification Technology, 213, 88-92.
https://doi.org/10.1016/j.seppur.2018.12.028
[9]  Zhang, T.F., Wang, Z.M., Feng, X.X. and Li, Y.M. (2021) Preparation and Characterization of ZnO-Doped and Li2O-Stabilized Na-β''-Al2O3 Solid Electrolyte via a Solid-State Reaction Method. Journal of Materials Science: Materials in Electronics, 32, 14149-14155.
https://doi.org/10.1007/s10854-021-05891-w
[10]  Zhu, C.F., Hong, Y.F. and Huang, P. (2016) Synthesis and Characterization of NiO Doped Beta-Al2O3 Solid Electrolyte. Journal of Alloys and Compounds, 688, 746-751.
https://doi.org/10.1016/j.jallcom.2016.07.264
[11]  Zhang, G.X., Wen, Z.Y., Wu, X.W., Zhang, J.C., Ma, G.Q. and Jun, J. (2014) Sol-Gel Synthesis of Mg2+ Stabilized Na-β''/β-Al2O3 Solid Electrolyte for Sodium Anode Battery. Journal of Alloys and Compounds, 613, 80-86.
https://doi.org/10.1016/j.jallcom.2014.05.073
[12]  Xu, D., Jiang, H.Y., Li, L., Li, M., and Hai, O. (2016) The Mechanical and Electrical Properties of Nb2O5 Doped Na-β''-Al2O3 Solid Electrolyte. The European Physical Journal Applied Physics, 74, Article ID: 10901.
https://doi.org/10.1051/epjap/2016150466
[13]  Zhang, T.F., Wang, Z.M., Feng, X.X., Xie, Z.X. and Li, Y.M. (2020) Preparation and Characterization of CoO-Doped and Li2O-Stabilized Na-β''-Al2O3 Solid Electrolyte via a Solid-State Reaction Method. Ceramics International, 46, 24668-24673.
https://doi.org/10.1016/j.ceramint.2020.06.256
[14]  Zhu, C., Xue, J. and Ji, G. (2015) Effect of Na2O Content on Properties of Beta Alumina Solid Electrolytes. Materials Science in Semiconductor Processing, 31, 487-492.
https://doi.org/10.1016/j.mssp.2014.12.038
[15]  Palomares, V., Serras, P., Villaluenga, I., Hueso, K B., Carretero-González, J. and Teófilo, T. (2012) Na-Ion Batteries, Recent Advances and Present Challenges to Become Low Cost Energy Storage Systems. Energy & Environmental Science, 5, 5884-5901.
https://doi.org/10.1039/c2ee02781j
[16]  何捍卫, 王晓, 潘登宇. 固相反应法制备β''-Al2O3粉末的热力学研究[J]. 粉末冶金材料科学与工程, 2015, 20(3): 338-343.
https://doi.org/10.3969/j.issn.1673-0224.2015.03.002

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133