全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

探讨坏死性凋亡相关长链非编码RNA作为肝癌预后预测标志物的价值
To Investigate the Value of Necrotic Apoptosis-Related Long Non-Coding RNA as a Prognostic Marker in Liver Cancer

DOI: 10.12677/ACM.2023.131143, PP. 1006-1025

Keywords: 肝癌,坏死性凋亡,长链非编码RNA,数据库,预后
Liver Cancer
, Necroptosis, Long Non-Coding RNA, Database, Prognosis

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:肝细胞癌(Hepatocellular carcinoma, HCC)是一种常见的恶性肿瘤。凋亡是诱导肿瘤发生发展的重要因素,而坏死性凋亡是程序性死亡的一种形式,亦是肿瘤细胞的一个重要特征。但是与坏死性凋亡相关的长链非编码RNA的价值仍未得到研究。通过肝癌转录组表达数据分析与肝癌坏死性凋亡相关的lncRNA,并评估其在肝癌研究的意义。根据获取癌症基因组图谱(TCGA)数据库的转录组表达数据,确定与坏死性凋亡相关的lncRNA并构建肝癌预后生存风险模型。分析显示坏死性凋亡评分可作为肝癌患者新的独立指标。基因集富集(GSEA)分析显示,坏死性凋亡风险评分反映了与细胞多糖降解和脂肪酸代谢过程有很高的相关性。综上所述,表明与坏死性凋亡相关的lncRNA在肝癌诊疗中的重要作用,并可能在未来作为肝癌患者预后预测的候选指标。
Hepatocellular carcinoma (HCC) is a common malignant tumor. Apoptosis is an important factor in-ducing tumor development, and necroptosis is a form of programmed death and an important fea-ture of tumor cells. But the value of long non-coding RNAs associated with necroptosis is still not obtained Study. lncRNAs associated with necroptosis in HCC were analyzed by hepatoma transcrip-tome expression data and their significance in HCC research was assessed. According to the tran-scriptome expression data obtained from the Cancer Genome Atlas (TCGA) database, lncRNAs asso-ciated with necroptosis were identified and a prognostic survival risk model for liver cancer was constructed. The analysis showed that the necroptosis score could be used as a new independent indicator in patients with liver cancer. Gene set enrichment (GSEA) analysis showed that the necroptosis risk score reflected a high correlation with cellular polysaccharide degradation and fatty acid metabolism processes. In summary, it is shown that lncRNAs associated with necroptosis play an important role in the diagnosis and treatment of liver cancer and may be used as candidate markers for prognosis prediction in patients with liver cancer in the future.

References

[1]  原发性肝癌诊疗指南(2022年版) [J]. 中国实用外科杂志, 2022, 42(3): 241-273.
[2]  程敏, 张静, 曹鹏博, 等. 缺氧相关长链非编码RNA作为肝癌预后预测标志物的潜在价值[J]. 遗传, 2022, 44(2): 153-173.
[3]  李权, 权美玉, 张金三. Parkin调控凋亡、坏死性凋亡和焦亡的研究进展[J]. 中国细胞生物学学报, 2021, 43(12): 2433-2440.
[4]  胡艳红, 张凡, 张楚焌, 等. 程序性细胞死亡形式研究进展[J]. 辽宁中医药大学学报, 2018, 20(12): 85-89.
[5]  Mcfadden, E.J. and Hargrove, A.E. (2016) Biochemical Methods to Investigate lncRNA and the Influence of lncRNA: Protein Complexes on Chromatin. Biochemistry, 55, 1615-1630.
https://doi.org/10.1021/acs.biochem.5b01141
[6]  张铃. 非编码RNA在肝癌发生、发展中的功能及机制研究[D]: [博士学位论文]. 重庆: 第二军医大学, 2013.
[7]  Huang, J.L., Zheng, L., Hu, Y.W., et al. (2014) Characteris-tics of Long Non-Coding RNA and Its Relation to Hepatocellular Carcinoma. Carcinogenesis, 35, 507-514.
https://doi.org/10.1093/carcin/bgt405
[8]  Standaert, L., Adriaens, C., Radaelli, E., et al. (2014) The Long Noncoding RNA Neat1 Is Required for Mammary Gland Development and Lactation. RNA, 20, 1844-1849.
https://doi.org/10.1261/rna.047332.114
[9]  王正. 肝细胞癌免疫相关基因的生物信息学筛选及DCK在肝细胞癌中的生物学功能研究[D]: [博士学位论文]. 济南: 山东大学, 2021.
[10]  Sun, Z., Jing, C., Xiao, C., et al. (2020) An Autophagy-Related Long Non-Coding RNA Prognostic Signature Accurately Predicts Survival Outcomes in Bladder Urothelial Carcinoma Patients. Aging (Albany NY), 12, 15624-15637.
https://doi.org/10.18632/aging.103718
[11]  Steyerberg, E.W. and Vergouwe, Y. (2014) Towards Better Clinical Prediction Models: Seven Steps for Development and an ABCD for Validation. European Heart Journal, 35, 1925-1931.
https://doi.org/10.1093/eurheartj/ehu207
[12]  Blanche, P., Dartigues, J.F. and Jacqmin-Gadda, H. (2013) Estimat-ing and Comparing Time-Dependent Areas under Receiver Operating Characteristic Curves for Censored Event Times with Competing Risks. Statistics in Medicine, 32, 5381-5397.
https://doi.org/10.1002/sim.5958
[13]  Siddiqui, A. and Ceppi, P. (2020) A Non-Proliferative Role of Pyrimidine Metabolism in Cancer. Molecular Metabolism, 35, Article ID: 100962.
https://doi.org/10.1016/j.molmet.2020.02.005
[14]  Gray, M.A., Stanczak, M.A., Mantuano, N.R., et al. (2020) Targeted Glycan Degradation Potentiates the Anticancer Immune Response in Vivo. Nature Chemical Biology, 16, 1376-1384.
https://doi.org/10.1038/s41589-020-0622-x
[15]  Yim, W.W. and Mizushima, N. (2020) Lysosome Bi-ology in Autophagy. Cell Discovery, 6, Article No. 6.
https://doi.org/10.1038/s41421-020-0141-7
[16]  Brown, J., Robusto, B., Morel, L. (2020) Intestinal Dysbiosis and Tryptophan Metabolism in Autoimmunity. Frontiers in Immunology, 11, Article No. 1741.
https://doi.org/10.3389/fimmu.2020.01741
[17]  Pettinelli, P., Arendt, B.M., Teterina, A., et al. (2018) Altered He-patic Genes Related to Retinol Metabolism and Plasma Retinol in Patients with Non-Alcoholic Fatty Liver Disease. PLOS ONE, 13, e0205747.
https://doi.org/10.1371/journal.pone.0205747
[18]  Koundouros, N. and Poulogiannis, G. (2020) Reprogramming of Fatty Acid Metabolism in Cancer. British Journal of Cancer, 122, 4-22.
https://doi.org/10.1038/s41416-019-0650-z
[19]  Prieto, L.I. and Baker, D.J. (2019) Cellular Senescence and the Immune System in Cancer. Gerontology, 65, 505-512.
https://doi.org/10.1159/000500683
[20]  Tu, C., Santo, L., Mishima, Y., et al. (2016) Monitoring Protein Synthesis in Single Live Cancer Cells. Integrative Biology (Camb), 8, 645-653.
https://doi.org/10.1039/C5IB00279F
[21]  Maiuri, M.C. and Maffia, P. (2021) Cellular Metabolism and Diseases. British Journal of Pharmacology, 178, 2031-2033.
https://doi.org/10.1111/bph.15355
[22]  钱丽媛, 李长菲, 罗云敬, 等. 甲胎蛋白在肝癌的诊断和治疗中的研究进展[J]. 生物工程学报, 2021, 37(9): 3042-3060.
[23]  Cai, H., Zhang, Y., Zhang, H., et al. (2020) Prognostic Role of Tumor Mutation Burden in Hepatocellular Carcinoma after Radical Hepatectomy. Journal of Surgical Oncology, 121, 1007-1014.
https://doi.org/10.1002/jso.25859
[24]  Maleki Vareki, S. (2018) High and Low Mutational Burden Tumors versus Immunologically Hot and Cold Tumors and Response to Immune Checkpoint Inhibitors. The Journal for ImmunoTherapy of Cancer, 6, Article No. 157.
https://doi.org/10.1186/s40425-018-0479-7
[25]  Liu, G.M., Zeng, H.D., Zhang, C.Y., et al. (2019) Identification of a Six-Gene Signature Predicting Overall Survival for Hepatocellular Carcinoma. Cancer Cell International, 19, Article No. 138.
https://doi.org/10.1186/s12935-019-0858-2
[26]  李超, 伏圣博, 刘华玲, 等. 细胞凋亡研究进展[J]. 世界科技研究与发展, 2007(3): 45-53.
[27]  潘少容, 曾克武, 白云. 细胞焦亡研究进展[J]. 生理科学进展, 2019, 50(2): 135-140.
[28]  Zhang, R., Xia, L.Q., Lu, W.W., et al. (2016) lncRNAs and Cancer. Oncology Letters, 12, 1233-1239.
https://doi.org/10.3892/ol.2016.4770
[29]  Chen, B.W., Zhou, Y., Wei, T., et al. (2021) lncRNA-POIR Promotes Epithelial-Mesenchymal Transition and Suppresses Sorafenib Sensitivity Simultaneously in Hepatocellular Carcinoma by Sponging miR-182-5p. Journal of Cellular Biochemistry, 122, 130-142.
https://doi.org/10.1002/jcb.29844
[30]  Sun, Z., Xue, S., Zhang, M., et al. (2020) Aberrant NSUN2-Mediated m(5)C Modification of H19 lncRNA Is Associated with Poor Differentiation of Hepatocellular Carcinoma. Oncogene, 39, 6906-6919.
https://doi.org/10.1038/s41388-020-01475-w
[31]  Li, X. and Li, N. (2018) lncRNAs on Guard. International Im-munopharmacology, 65, 60-63.
https://doi.org/10.1016/j.intimp.2018.09.031
[32]  Lou, Y., Yu, Y., Xu, X., et al. (2019) Long Non-Coding RNA LUCAT1 Promotes Tumourigenesis by Inhibiting ANXA2 Phosphorylation in Hepatocellular Carcinoma. Journal of Cellular and Molecular Medicine, 23, 1873-1884.
https://doi.org/10.1111/jcmm.14088
[33]  Liu, H.Z., Liu, G.Y., Pang, W.W., et al. (2020) lncRNA LUCAT1 Pro-motes Proliferation of Ovarian Cancer Cells by Regulating miR-199a-5p Expression. European Review for Medical and Pharmacological Sciences, 24, 1682-1687.
[34]  Xue, M., Tao, W., Yu, S., et al. (2020) lncRNA ZFPM2-AS1 Pro-motes Proliferation via miR-18b-5p/VMA21 Axis in Lung Adenocarcinoma. Journal of Cellular Biochemistry, 121, 313-321.
https://doi.org/10.1002/jcb.29176
[35]  Sun, G. and Wu, C. (2020) ZFPM2-AS1 Facilitates Cell Growth in Esophageal Squamous Cell Carcinoma via Up-Regulating TRAF4. Bioscience Reports, 40, BSR20194352.
https://doi.org/10.1042/BSR20194352
[36]  Wang, Y., Yang, L., Chen, T., et al. (2019) A Novel lncRNA MCM3AP-AS1 Promotes the Growth of Hepatocellular Carcinoma by Targeting miR-194-5p/FOXA1 Axis. Molecular Cancer, 18, Article No. 28.
https://doi.org/10.1186/s12943-019-0957-7
[37]  Lan, L., Liang, Z., Zhao, Y., et al. (2020) lncRNA MCM3AP-AS1 Inhibits Cell Proliferation in Cervical Squamous Cell Carcinoma by Down-Regulating miRNA-93. Bio-science Reports, 40, BSR20193794.
https://doi.org/10.1042/BSR20193794
[38]  Sun, H., Wu, P., Zhang, B., et al. (2021) MCM3AP-AS1 Promotes Cisplatin Resistance in Gastric Cancer Cells via the miR-138/FOXC1 Axis. Oncology Letters, 21, Article No. 211.
https://doi.org/10.3892/ol.2021.12472
[39]  Chen, Q., Xu, H., Zhu, J., et al. (2020) lncRNA MCM3AP-AS1 Pro-motes Breast Cancer Progression via Modulating miR-28-5p/CENPF Axis. Biomedicine & Pharmacotherapy, 128, Arti-cle ID: 110289.
https://doi.org/10.1016/j.biopha.2020.110289

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133