全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

外泌体来源的miRNA在结直肠癌中的作用
Role of Exosome-Derived miRNA in Colorectal Cancer

DOI: 10.12677/ACM.2023.131140, PP. 986-993

Keywords: 结直肠癌,外泌体,miRNA,肿瘤微环境,结直肠癌治疗
Colorectal Cancer
, Exosomes, miRNA, Tumor Microenvironment, Treatment of Colorectal Cancer

Full-Text   Cite this paper   Add to My Lib

Abstract:

外泌体是由原核细胞和真核细胞主动向外释放的脂质双分子层囊泡样结构,可携带多种特异的生物活性分子如蛋白质、脂质、miRNA和lncRNA等,进入相应的靶细胞,参与调控细胞的生理及病理功能。外泌体是将miRNA和其他活性物质运输到周围细胞的容器,外泌体介导的miRNA可参与结直肠癌的发生、侵袭和转移,并在结直肠癌诊断、预后和治疗过程中扮演重要角色。本文就外泌体来源的miRNA在结直肠癌发生发展过程中的作用、诊断、预后评估及治疗中的相关研究进展进行综述。
Exosomes are lipid bilayer vesicle-like structures actively released by prokaryotic cells and eukar-yotic cells. They can carry a variety of specific biologically active molecules such as proteins, lipids, miRNA, and lncRNA into the corresponding target cells, involved in regulating the physiological and pathological functions of cells. Exosomes are containers that transport miRNA and other active sub-stances to surrounding cells. Exosome-mediated miRNA can be involved in the occurrence, invasion and metastasis of colorectal cancer, and play an important role in the diagnosis, prognosis and treatment of colorectal cancer. This article reviews the related research progress on the role of exo-somal miRNA in the occurrence and development of colorectal cancer, diagnosis, prognosis evalua-tion and treatment.

References

[1]  Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2]  Cao, M., Li, H., Sun, D. and Chen, W. (2020) Cancer Burden of Major Cancers in China: A Need for Sustainable Actions. Cancer Communications (London), 40, 205-210.
https://doi.org/10.1002/cac2.12025
[3]  Kalluri, R. and LeBleu, V.S. (2020) The Biology, Function, and Biomedi-cal Applications of Exosomes. Science, 367, 640.
https://doi.org/10.1126/science.aau6977
[4]  Hussen, B.M., Hi-dayat, H.J., Salihi, A., Sabir, D.K., Taheri, M. and Ghafouri-Fard, S. (2021) MicroRNA: A Signature for Cancer Pro-gression. Biomedicine & Pharmacotherapy, 138, Article ID: 111528.
https://doi.org/10.1016/j.biopha.2021.111528
[5]  Ali Syeda, Z., Langden, S., Munkhzul, C., Lee, M. and Song, S.J. (2020) Regulatory Mechanism of MicroRNA Expression in Cancer. International Journal of Molecular Sciences, 21, 1723.
https://doi.org/10.3390/ijms21051723
[6]  Sun, Z., Shi, K., Yang, S., et al. (2018) Effect of Exosomal miRNA on Cancer Biology and Clinical Applications. Molecular Cancer, 17, Article No. 147.
https://doi.org/10.1186/s12943-018-0897-7
[7]  Elewaily, M.I. and Elsergany, A.R. (2021) Emerging Role of Ex-osomes and Exosomal microRNA in Cancer: Pathophysiology and Clinical Potential. Journal of Cancer Research and Clinical Oncology, 147, 637-648.
https://doi.org/10.1007/s00432-021-03534-5
[8]  Trams, E.G., Lauter, C.J., Salem, N. and Heine, U. (1981) Exfo-liation of Membrane Ecto-Enzymes in the Form of Micro-Vesicles. Biochimica et Biophysica Acta, 645, 63-70.
https://doi.org/10.1016/0005-2736(81)90512-5
[9]  Harding, C., Heuser, J. and Stahl, P. (1983) Recep-tor-Mediated Endocytosis of Transferrin and Recycling of the Transferrin Receptor in Rat Reticulocytes. Journal of Cell Biology, 97, 329-339.
https://doi.org/10.1083/jcb.97.2.329
[10]  Liu, Q.W., He, Y. and Xu, W.W. (2022) Molecular Functions and Therapeutic Applications of Exosomal Noncoding RNAs in Cancer. Experimental & Molecular Medicine, 54, 216-225.
https://doi.org/10.1038/s12276-022-00744-w
[11]  Raposo, G., Nijman, H.W., Stoorvogel, W., et al. (1996) B Lymphocytes Secrete Antigen-Presenting Vesicles. Journal of Experimental Medicine, 183, 1161-1172.
https://doi.org/10.1084/jem.183.3.1161
[12]  Ortiz-Bonilla, C.J., Uccello, T.P., Gerber, S.A., et al. (2022) Bladder Cancer Extracellular Vesicles Elicit a CD8 T Cell-Mediated Antitumor Immunity. International Journal of Molecular Sciences, 23, Article No. 2904.
https://doi.org/10.3390/ijms23062904
[13]  Akers, J.C., Gonda, D., Kim, R., Carter, B.S. and Chen, C.C. (2013) Biogenesis of Extracellular Vesicles (EV): Exosomes, Microvesicles, Retrovirus-Like Vesicles, and Apoptotic Bodies. Journal of Neuro-Oncology, 113, 1-11.
https://doi.org/10.1007/s11060-013-1084-8
[14]  Michlewski, G. and Caceres, J.F. (2019) Post-Transcriptional Control of miRNA Biogenesis. RNA, 25, 1-16.
https://doi.org/10.1261/rna.068692.118
[15]  Larios, J., Mercier, V., Roux, A. and Gruenberg, J. (2020) ALIX- and ESCRT-III-Dependent Sorting of Tetraspanins to Exosomes. Journal of Cell Biology, 219, e201904113.
https://doi.org/10.1083/jcb.201904113
[16]  杨秋玲, 刘朝奇, 李倩, 李志英. 外泌体介导的miRNAs对恶性肿瘤调控作用研究的新进展[J]. 生命的化学, 2020, 40(2): 243-249.
[17]  Kulkarni, B., Kirave, P., Gondaliya, P., et al. (2019) Exosomal miRNA in Chemoresistance, Immune Evasion, Metastasis and Progression of Cancer. Drug Discovery Today, 24, 2058-2067.
https://doi.org/10.1016/j.drudis.2019.06.010
[18]  Mathieu, M., Martin-Jaular, L., Lavieu, G. and Théry, C. (2019) Specificities of Secretion and Uptake of Exosomes and Other Extracellular Vesicles for Cell-to-Cell Communication. Nature Cell Biology, 21, 9-17.
https://doi.org/10.1038/s41556-018-0250-9
[19]  Bae, S., Brumbaugh, J. and Bonavida, B. (2018) Exosomes De-rived from Cancerous and Non-Cancerous Cells Regulate the Anti-Tumor Response in the Tumor Microenvironment. Genes Cancer, 9, 87-100.
https://doi.org/10.18632/genesandcancer.172
[20]  Guo, Y., Ji, X., Liu, J., et al. (2019) Effects of Exosomes on Pre-Metastatic Niche Formation in Tumors. Molecular Cancer, 18, Article No. 39.
https://doi.org/10.1186/s12943-019-0995-1
[21]  Maacha, S., Bhat, A.A., Jimenez, L., et al. (2019) Extracellular Vesicles-Mediated Intercellular Communication: Roles in the Tumor Microenvironment and Anti-Cancer Drug Resistance. Molecular Cancer, 18, Article No. 55.
https://doi.org/10.1186/s12943-019-0965-7
[22]  Zhao, S., Mi, Y., Guan, B., et al. (2020) Tumor-Derived Exoso-mal miR-934 Induces Macrophage M2 Polarization to Promote Liver Metastasis of Colorectal Cancer. Journal of Hema-tology & Oncology, 13, Article No. 156.
https://doi.org/10.1186/s13045-020-00991-2
[23]  Wang, D., Wang, X., Si, M., et al. (2020) Exo-some-Encapsulated miRNAs Contribute to CXCL12/CXCR4-Induced Liver Metastasis of Colorectal Cancer by Enhanc-ing M2 Polarization of Macrophages. Cancer Letters, 474, 36-52.
https://doi.org/10.1016/j.canlet.2020.01.005
[24]  Zeng, Z., Li, Y., Pan, Y., et al. (2018) Cancer-Derived Exosomal miR-25-3p Promotes Pre-Metastatic Niche Formation by Inducing Vascular Permeability and Angiogenesis. Nature Communications, 9, Article No. 5395.
https://doi.org/10.1038/s41467-018-07810-w
[25]  Shang, A., Wang, X., Gu, C., et al. (2020) Exosomal miR-183-5p Promotes Angiogenesis in Colorectal Cancer by Regulation of FOXO1. Aging (Albany NY), 12, 8352-8371.
https://doi.org/10.18632/aging.103145
[26]  Yan, S., Ren, X., Yang, J., Wang, J., et al. (2020) Exosomal miR-548c-5p Regulates Colorectal Cancer Cell Growth and Invasion through HIF1A/CDC42 Axis. OncoTargets and Therapy, 13, 9875-9885.
https://doi.org/10.2147/OTT.S273008
[27]  Carney, R.P., Hazari, S., Rojalin, T., et al. (2017) Targeting Tu-mor-Associated Exosomes with Integrin-Binding Peptides. Advanced Biosystems, 1, Article ID: 1600038.
https://doi.org/10.1002/adbi.201600038
[28]  Min, L., Zhu, S., Chen, L., et al. (2019) Evaluation of Circulating Small Extracellular Vesicles Derived miRNAs as Biomarkers of Early Colon Cancer: A Comparison with Plasma Total miRNAs. Journal of Extracellular Vesicles, 8, Article ID: 1643670.
https://doi.org/10.1080/20013078.2019.1643670
[29]  Karimi, N., Ali Hosseinpour Feizi, M., Safaralizadeh, R., et al. (2019) Serum Overexpression of miR-301a and miR-23a in Patients with Colorectal Cancer. Journal of the Chinese Medical Association, 82, 215-220.
https://doi.org/10.1097/JCMA.0000000000000031
[30]  Sun, L., Liu, X., Pan, B., et al. (2020) Serum Exosomal miR-122 as a Potential Diagnostic and Prognostic Biomarker of Colorectal Cancer with Liver Metastasis. Journal of Cancer, 11, 630-637.
https://doi.org/10.7150/jca.33022
[31]  Shi, Y., Zhuang, Y., Zhang, J., et al. (2021) Four Circulating Exosomal miRNAs as Novel Potential Biomarkers for the Early Diagnosis of Human Colorectal Cancer. Tissue and Cell, 70, Article ID: 101499.
https://doi.org/10.1016/j.tice.2021.101499
[32]  Xiao, Y., Zhong, J., Zhong, B., et al. (2020) Exosomes as Potential Sources of Biomarkers in Colorectal Cancer. Cancer Letters, 476, 13-22.
https://doi.org/10.1016/j.canlet.2020.01.033
[33]  陈军歌. 外泌体作为结直肠癌诊断标志物的研究进展[J]. 现代肿瘤医学, 2020, 28(17): 3089-3092.
[34]  Zhou, H., Zhu, L., Song, J., et al. (2022) Liquid Biopsy at the Frontier of Detection, Prognosis and Progression Monitoring in Colorectal Cancer. Molecular Cancer, 21, Article No. 86.
https://doi.org/10.1186/s12943-022-01556-2
[35]  Tovar-Camargo, O.A., Toden, S. and Goel, A. (2016) Exosomal microRNA Biomarkers: Emerging Frontiers in Colorectal and Other Human Cancers. Expert Review of Molecular Diag-nostics, 16, 553-567.
https://doi.org/10.1586/14737159.2016.1156535
[36]  Kosaka, N., Iguchi, H., Yoshioka, Y., et al. (2010) Secretory Mechanisms and Intercellular Transfer of microRNAs in Living Cells. Journal of Biological Chemistry, 285, 17442-17452.
https://doi.org/10.1074/jbc.M110.107821
[37]  Wang, B., Wang, Y., Yan, Z., Sun, Y. and Su, C. (2019) Colorectal Cancer Cell-Derived Exosomes Promote Proliferation and Decrease Apoptosis by Activating the ERK Pathway. International Journal of Clinical and Experimental Pathology, 12, 2485-2495.
[38]  Kosgodage, U.S., Mould, R., Henley, A.B., et al. (2018) Cannabidiol (CBD) Is a Novel Inhibitor for Exosome and Microvesicle (EMV) Release in Cancer. Frontiers in Pharmacology, 9, Article No. 889.
https://doi.org/10.3389/fphar.2018.00889
[39]  Colombo, M., Moita, C., van Niel, G., et al. (2013) Analysis of ESCRT Functions in Exosome Biogenesis, Composition and Secretion Highlights the Heterogeneity of Extracellular Vesicles. Journal of Cell Science, 126, 5553-5565.
https://doi.org/10.1242/jcs.128868
[40]  Asadirad, A., Baghaei, K., Hashemi, S.M., et al. (2022) Dendritic Cell Immunotherapy with miR-155 Enriched Tumor-Derived Exosome Suppressed Cancer Growth and Induced Antitumor Immune Responses in Murine Model of Colorectal Cancer Induced by CT26 Cell Line. International Immunopharma-cology, 104, Article ID: 108493.
https://doi.org/10.1016/j.intimp.2021.108493
[41]  Guo, D., Chen, Y., Wang, S., et al. (2018) Exosomes from Heat-Stressed Tumour Cells Inhibit Tumour Growth by Converting Regulatory T Cells to Th17 Cells via IL-6. Immu-nology, 154, 132-143.
https://doi.org/10.1111/imm.12874

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133