|
Pharmacy Information 2023
基于网络药理学探讨山茱萸治疗心源性休克的作用机制研究
|
Abstract:
目的:探究山茱萸干预心源性休克的潜在机制。方法:从TCMSP数据库获取山茱萸的有效成分和潜在靶点。收集GeneCards、OMIM、Drugbank和PharmGkb等数据库中的心源性休克相关基因。对两者取交集后找出发挥作用的化合成分和潜在靶点。对潜在靶点进行PPI、GO、KEGG分析,探究山茱萸干预心源性休克的作用机制。结果:通过TCMSP共找出山茱萸中的20个化学成分,54个靶点。综合所有疾病数据库共获得492个心源性休克相关基因。两者取交集后得到15个山茱萸干预心源性休克潜在靶点。PPI结果显示,PTGS2、ADRB2、DRD1、ADRA1A、ADRA1B、CASP3之间有较强的相互作用关系。GO结果表明,BP与腺苷酸环化酶激活肾上腺素能受体信号通路、肾上腺素能受体信号通路、管径调节的调节有关。CC与膜筏、膜微域、突触前膜的内在成分有关。MF参与G蛋白偶联胺受体活性、儿茶酚胺结合、参与凋亡信号通路的半胱氨酸型肽酶活性有关。KEGG结果显示,交集基因与钙信号通路、cGMP-PKG信号通路、唾液分泌、心肌细胞肾上腺素能信号通路、IL-17信号通路、组氨酸代谢、TNF信号通路有关。结论:山茱萸可能通过调节PTGS2、ADRB2、DRD1、ADRA1A等靶点进而干预心源性休克患者的预后。
Objective: To explore the potential mechanism of Cornus officinalis intervention in cardiogenic shock. Methods: The active components and potential targets of Cornus officinalis were obtained from the TCMSP database. Collect cardiogenic shock-related genes from GeneCards, OMIM, Drug-bank and PharmGkb databases. Find out the active compounds and potential targets after the intersection of the two. PPI, GO and KEGG were analyzed for potential targets to explore the mechanism of the action of Cornus officinalis intervention in cardiogenic shock. Results: A total of 20 chemical constituents and 54 targets were identified from Cornus officinalis by TCMSP. A total of 492 cardiogenic shock-related genes were obtained from all disease databases. Fifteen potential targets of Cornus officinalis for cardiogenic shock intervention were obtained after the intersection of the two. PPI results showed that PTGS2, ADRB2, DRD1, ADRA1A, ADRA1B, CASP3 had a strong interaction relationship. GO results showed that BP was related to the activation of adrenergic receptor signal pathway by adenylate cyclase, the regulation of adrenergic receptor signal pathway and the regulation of pipe diameter. CC is related to the internal components of membrane raft, membrane microdomain and presynaptic membrane. MF is involved in G protein-coupled amine receptor activity, catecholamine binding and cysteine peptidase activity involved in the apoptosis signal pathway. KEGG results showed that the cross genes were related to calcium signaling pathway, cGMP-PKG signaling pathway, salivary secretion, adrenergic signaling pathway, IL-17 signaling pathway, histidine metabolism and TNF signaling pathway. Conclusion: Cornus officinalis may interfere with the prognosis of patients with cardiogenic shock by regulating PTGS2, ADRB2, DRD1, ADRA1A and other targets.
[1] | Jentzer, J.C., et al. (2019) Cardiogenic Shock Classification to Predict Mortality in the Cardiac Intensive Care Unit. Journal of the American College of Cardiology, 74, 2117-2128. https://doi.org/10.1016/j.jacc.2019.07.077 |
[2] | 孙兵, 唐晓. 机械循环支持流感病毒相关心肌炎所致难治性心源性休克[J]. 中华医学杂志, 2021, 101(8): 601. |
[3] | Shah, A.H., Puri, R. and Kalra, A. (2019) Management of Cardiogenic Shock Complicating Acute Myocardi-al Infarction: A Review. Clinical Cardiology, 42, 484-493. https://doi.org/10.1002/clc.23168 |
[4] | 刘东坚. 参附注射液用于急性心肌梗死伴心源性休克急救的效果[J]. 中西医结合心血管病电子杂志, 2020, 8(22): 31-32. https://doi.org/10.16282/j.cnki.cn11-9336/r.2020.22.024 |
[5] | 园丁. 滋补肝肾山茱萸[J]. 药物与人, 2006(12): 39. |
[6] | 李德顺, 汤小虎. 张锡纯应用山茱萸特色分析[J]. 辽宁中医杂志, 2006, 33(2): 164-165. |
[7] | 王四平, 吕淑静, 吴中秋, 李士懋. 李士懋教授运用山茱萸治疗脱证验案3则[J]. 新中医, 2010, 42(4): 103-104.
https://doi.org/10.13457/j.cnki.jncm.2010.04.036 |
[8] | Hopkins, A.L. (2007) Network Pharmacology. Nature Bio-technology, 25, 1110-1111.
https://doi.org/10.1038/nbt1007-1110 |
[9] | Thiele, H., Zeymer, U., Neumann, F.J., et al. (2012) Intraaortic Balloon Support for Myocardial Infarction with Cardiogenic Shock. The New England Journal of Medicine, 367, 1287-1296. https://doi.org/10.1056/NEJMoa1208410 |
[10] | Reynolds, H.R. and Hochman, J.S. (2008) Cardiogenic Shock: Current Concepts and Improving Outcomes. Circulation, 117, 686-697. https://doi.org/10.1161/CIRCULATIONAHA.106.613596 |
[11] | Babu, S. and Jayaraman, S. (2020) An Update on β-Sitosterol: A Potential Herbal Nutraceutical for Diabetic Management. Biomedicine & Pharmacotherapy, 131, Article ID: 110702. https://doi.org/10.1016/j.biopha.2020.110702 |
[12] | Koo, H.J., Park, H.J., Byeon, H.E., et al. (2014) Chinese Yam Extracts Containing β-Sitosterol and Ethyl Linoleate Protect against Athero-Sclerosis in Apolipoprotein E-Deficient Mice and Inhibit Muscular Expression of VCAM-1 in Vitro. Journal of Food Science, 79, H719-H729. https://doi.org/10.1111/1750-3841.12401 |
[13] | Gogoi, D., Pal, A., Chattopadhyay, P., et al. (2018) First Report of Plant-Derived β-Sitosterol with Antithrombotic, in Vivo Anticoagulant, and Thrombus-Preventing Activities in a Mouse Model. Journal of Natural Products, 81, 2521-2530.
https://doi.org/10.1021/acs.jnatprod.8b00574 |
[14] | 侯文, 卢建森, 左怀文, 刘宏胜. 熊果酸通过调控PTGS2对小鼠肝缺血/再灌注损伤的保护作用[J]. 实用器官移植电子杂志, 2022, 10(4): 353-359. |
[15] | Katsarou, M.S., Ka-rathanasopoulou, A., Andri-Anopoulou, A., et al. (2018) Beta 1, Beta 2 and Beta 3 Adrenergic Receptor Gene Polymor-phisms in a Southeastern European Population. Frontiers in Genetics, 9, 560-568.
https://doi.org/10.3389/fgene.2018.00560 |
[16] | 蒋玲, 王慧, 刘彦娜, 等. 原发性高血压病人FMD、NMD与血压、心率变异性的关系探讨[J]. 中西医结合心脑血管病杂志, 2022, 20(8): 1472-1477. |
[17] | Yan, Y., Jiang, W., Liu, L., et al. (2015) Dopamine Controls Systemic Inflammation through Inhibition of NLRP3 Inflammasome. Cell, 160, 62-73. https://doi.org/10.1016/j.cell.2014.11.047 |
[18] | Han, J., Zuo, J., Zhu, D. and Gao, C. (2018) The Correlation between SNPs within the Gene of Adrenergic Receptor and Neuropeptide Y and Risk of Cervical Vertigo. Journal of Clinical Laboratory Analysis, 32, e22366.
https://doi.org/10.1002/jcla.22366 |
[19] | Lakhani, S.A., Masud, A., Kuida, K., et al. (2006) Caspases 3 and 7: Key Mediators of Mitochondrial Events of Apoptosis. Science, 311, 847-851. https://doi.org/10.1126/science.1115035 |
[20] | Liu, B., et al. (2019) The Glucocorticoid Receptor in Cardiovascular Health and Disease. Cells, 8, Article 1227.
https://doi.org/10.3390/cells8101227 |
[21] | 董丹红, 庞玺倬, 李琳. PKG信号通路在ACS患者PCI术后血管内皮损伤中作用[J]. 昆明医科大学学报, 2020, 41(8): 27-32. |
[22] | 杨尚伟, 王娜娜, 何文洁, 张馨予, 王若州, 井维尧, 袁博, 杜小正, 王金海. Th17细胞及其相关效应因子在缺血性脑卒中炎性损伤中的作用研究概况[J]. 甘肃中医药大学学报, 2022, 39(3): 110-114.
https://doi.org/10.16841/j.issn1003-8450.2022.03.18 |
[23] | 史冬, 赵建玉, 闫振宇, 李玺. NF-κB调节TNF-α表达减轻大鼠缺血性脑血管病脑组织损伤[J]. 中国老年学杂志, 2017, 37(10): 2403-2405. |