All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99


Relative Articles


The Study of Ship Exhaust Emission Monitoring System Based on UAV

DOI: 10.12677/DSC.2023.121001, PP. 1-10

Keywords: 船舶尾气监测,无人机,气体传感器,数学模型
Ship Emission Monitoring
, UAV, Gas Sensor, Mathematical Model

Full-Text   Cite this paper   Add to My Lib


It is clear in our county that the number of ships owned is very high in the world, but there is a severe lack of field research on ship exhaust emission. Maritime department mainly checks fuel quality and record in the process of law enforcement, then determines whether using fuel sampling to realize the supervision of sulfur content in ship fuel oil, according to the actual situation. There are some practical disadvantages to this approach, including poorly targeted, random in check target, higher cost, small number of checks, low efficiency. Therefore, a ship exhaust monitoring system based on unmanned aerial vehicle (UAV) is designed in this paper. The monitoring system is composed of autonomous flight system, airborne gas sampling system, ground communication control system and wireless transmission system. The ground communication control system, which is rely upon the LORA and PC for data transport, processes the data by LabVIEW based on the mathematical model of emission is established. The monitoring data showed that the system can quickly monitor the concentration of SO2 in ship exhaust gas and calculate the sulfur content and NOx brake emission by mathematical model. Compared with the original fuel sampling method, it is more targeted and real-time.


[1]  交通运输部. 交通运输部印发珠三角、长三角、环渤海(京津冀)水域船舶排放控制区实施方案[EB/OL]. 中国政府网., 2015-12-04.
[2]  胡健波, 朱建华, 彭士涛, 等. 通过尾气估算船用燃油硫含量的岸基嗅探法实验[J]. 水道港口, 2018, 39(6): 735-738.
[3]  Alf?ldy, B., L??v, J.B., Lagler, F., Mellqvist, J. and Berg, N. (2013) Measurements of Air Pollution Emission Factors for Marine Transportation in SECA. Atmospheric Measurement Techniques, 6, 1777-1791.
[4]  Mellqvist, J. and Berg N. (2010) Identification of Gross Polluting Ships. RG Report (G?teborg) No. 4, Chalmers University of Technology, G?teborg.
[5]  Berg, N., Mellqvist, J., Jalkanen, J.-P. and Balzani, J. (2012) Ship Emissions of SO2 and NO2: DOAS Measurements from Airborne Platforms. Atmospheric Measurement Techniques, 5, 1085-1098.
[6]  Balzani L??v, J.M., Alfoldy, B., et al. (2014) Field Test of Available Methods to Measure Remotely SOx and NOx Emissions from Ships. Atmospheric Measurement Techniques, 7, 2597-2613.
[7]  Mellqvist, J., Ekholm, J., Salo, K. and Beecken, J. (2014) Identification of Gross Polluting Ships to Promote a Level Playing Field within the Shipping Sector. Chalmers University of Technology, G?teborg.
[8]  刘昭青. 丹麦使用硫嗅探式无人机检测船舶污染排放[J]. 航海, 2019(3): 70.
[9]  Beecken, J., Mellqvist, J., Salo, K., Ekholm, J. and Jalkanen, J.P. (2013) Airborne Emission Measurements of SO2, NOx and Particles from Individual Ships Using a Sniffer Technique. Atmospheric Measurement Techniques Discussions, 6, 10617-10651.
[10]  Berg, N., Mellqvist, J., Jalkanen, J. P. and Balzani, J. (2012) Ship Emissions of SO2 and NO2: DOAS Measurements from Airborne Platforms. Atmospheric Measurement Techniques, 5, 1085-1098.
[11]  张帆. 基于实测的船舶大气污染物排放及其对近海环境空气影响研究[D]: [博士学位论文]. 北京: 中国科学院大学, 2015.
[12]  Moldanová, J., Fridell, E., Popovicheva, O., et al. (2009) Characterisation of Particulate Matter and Gaseous Emissions from a Large Ship Diesel Engine. Atmospheric Environment, 43, 2632-2641.
[13]  Williams, E.J., Lerner, B.M., Murphy, P.C., Herndon, S.C. and Zahniser, M.S. (2009) Emissions of NOx, SO2, CO, and HCHO from Commercial Marine Shipping during Texas Air Quality Study (TexAQS) 2006. Journal of Geophysical Research: Atmospheres, 114, Article No. D21306.
[14]  Tuttle, K., et al. (1995) Combustion-Generated Emissions in Marine Propulsion Systems. Proceedings of Ship Design and Operation in Harmony with the Environment (ss. 311-232), Jersey City, NJ, 1995.
[15]  Jalkanen, J.-P., Brink, A., Kalli, J., et al. (2009) A Modelling System for the Exhaust Emissions of Marine Traffic and Its Application in the Baltic Sea Area. Atmospheric Chemistry and Physics, 9, 9209-9223.


comments powered by Disqus

Contact Us


WhatsApp +8615387084133

WeChat 1538708413