|
基于卫星遥感数据率定分布式水文模型参数
|
Abstract:
近年来卫星遥感数据产品得到长足发展,可为水文建模领域提供有力的数据支撑。在渭河流域收集长序列卫星遥感土壤湿度和蒸发数据的基础上,分别采用联合和分步方法率定分布式水文模型DDRM参数,并与常规仅基于流量的参数率定方法的模拟效果进行对比。结果表明:参数率定过程引入卫星遥感数据可显著提高DDRM模型对蒸发和土壤湿度的模拟效果,但相应的径流模拟效果略有下降。此外,分步率定方法相较于常规率定方法能有效降低径流模拟的不确定性。
Recently rapid development of satellite remote sensing data product can provide a solid basis for hydrological modeling. In this study, based on the long-term satellite remote sensing evaporation and soil moisture data, the joint-calibration and stepwise-calibration schemes were used to calibrate the DDRM model in the Weihe basin, and the simulation performance was compared with the common calibration scheme using streamflow data only. The results show that incorporating the satellite remote sensing data into the calibration procedure can significantly improve DDRM’s simulation performance on evaporation and soil moisture, with a slightly decreased performance on streamflow simulation. Moreover, the stepwise-calibration schemes can effectively reduce the simulation uncertainty of streamflow, when compared to the common calibration scheme.
[1] | GUPTA, H. V., KLING, H., YILMAZ, K. K., et al. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 2009, 377: 80-91.
https://doi.org/10.1016/j.jhydrol.2009.08.003 |
[2] | VRUGT, J. A., GUPTA, H. V., BOUTEN, W., et al. A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resources Research, 2003, 39(8): 1201.
https://doi.org/10.1029/2002WR001642 |
[3] | MIRALLES, D. G., HOLMES, T. R. H., DE JEU, R. A. M., et al. Global land-surface evaporation estimated from satellite-based observations. Hydrology and Earth System Sciences, 2011, 15(2): 453-469.
https://doi.org/10.5194/hess-15-453-2011 |
[4] | MARTENS, B., MIRALLES, D. G., LIEVENS, H., et al. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geoscientific Model Development, 2017, 10(5): 1903-1925. https://doi.org/10.5194/gmd-10-1903-2017 |
[5] | GUILLOD, B. P., ORLOWSKY, B., MIRALLES, D. G., et al. Recon-ciling spatial and temporal soil moisture effects on afternoon rainfall. Nature Communications, 2015, 6: 6443. https://doi.org/10.1038/ncomms7443 |
[6] | LóPEZ LóPEZ, P., SUTANUDJAJA, E. H., SCHELLEKENS, J., et al. Calibration of a large-scale hydrological model using satellite-based soil moisture and evapotranspiration products. Hydrology and Earth System Sciences, 2017, 21(6): 3125-3144.
https://doi.org/10.5194/hess-21-3125-2017 |
[7] | ROY, T., GUPTA, H. V., SERRAT-CAPDEVILA, A., et al. Using satellite-based evapotranspiration estimates to improve the structure of a simple conceptual rainfall-runoff model. Hydrology and Earth System Sciences, 2017, 21(2): 879-896.
https://doi.org/10.5194/hess-21-879-2017 |
[8] | DORIGO, W., WAGNER, W., ALBERGEL, C., et al. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the-art and future directions. Remote Sensing of Environment, 2017, 203: 185-215.
https://doi.org/10.1016/j.rse.2017.07.001 |
[9] | ALBERGEL, C., DORIGO, W., BALSAMO, G., et al. Monitoring mul-ti-decadal satellite earth observation of soil moisture products through land surface reanalysis. Remote Sensing of Environment, 2013, 138: 77-89.
https://doi.org/10.1016/j.rse.2013.07.009 |
[10] | 黄图南, 郑有飞, 段长春, 等. 几种卫星反演土壤湿度在中国地区的对比分析[J]. 遥感信息, 2017(3): 25-33.
HUANG Tunan, ZHENG Youfei, DUAN Changchun, et al. Comparative analysis of soil moisture retrieval by satellites in China. Remote Sensing Information, 2017(3): 25-33. (in Chinese) |
[11] | 马思源, 朱克云, 李明星, 马柱国. 中国区域多源土壤湿度数据的比较研究[J]. 气候与环境研究, 2016, 21(2): 121-133.
MA Siyuan, ZHU Keyun, LI Mingxing and MA Zhuguo. A comparative study of multi-source soil moisture data for China’s regions. Climatic and Environmental Research, 2016, 21(2): 121-133. (in Chinese) |
[12] | 李明星, 马柱国, 杜继稳. 区域土壤湿度模拟检验和趋势分析——以陕西省为例[J]. 中国科学: 地球科学, 2010(3): 363-379.
LI Mingxing, MA Zhuguo and DU Jiwen. Regional soil moisture simulation for Shaanxi Province using SWAT model validation and trend analysis. Science China: Earth Sciences, 2010(3): 363-379. (in Chinese) |
[13] | 庄媛, 师春香, 沈润平, 等. 中国区域多种微波遥感土壤湿度产品质量评估[J]. 气象科学, 2015(3): 289-296.
ZHUANG Yuan, SHI Chunxiang, SHEN Runping, et al. Quality evaluation of multi-microwave remote sensing soil moisture products over China. Journal of the Meteorological Sciences, 2015, 35(3): 289-296. (in Chinese) |
[14] | 曾凌, 熊立华, 杨涵. 西江流域卫星遥感与水文模型模拟的两种土壤湿度对比研究[J]. 水资源研究, 2018, 7(4): 339-350.
ZENG Ling, XIONG Lihua and YANG Han. Comparison of soil moisture sensed remotely and simulated by hydrological model in the Xijiang Basin. Journal of Water Resources Research, 2018, 7(4), 339-350. (in Chinese) |
[15] | 熊立华, 郭生练. 分布式流域水文模型[M]. 北京: 中国水利水电出版社, 2004.
XIONG Lihua, GUO Shenglian. Distributed hydrological model. Beijing: China Water and Power Press, 2004. (in Chi-nese) |
[16] | 熊立华, 郭生练, 田向荣. 基于DEM的分布式流域水文模型及应用[J]. 水科学进展, 2004, 15(4): 517-520.
XIONG Lihua, GUO Shenglian and TIAN Xiangrong. DEM-based distributed hydrological model and its application. Ad-vances in Water Science, 2004, 15(4): 517-520. (in Chinese) |
[17] | 龙海峰, 熊立华, 万民. 基于DEM 的分布式水文模型在清江流域的应用[J]. 长江流域资源与环境, 2012, 21(1): 71-78.
LONG Haifeng, XIONG Lihua and WAN Min. Application of DEM-based distributed hydrological model in Qingjiang River Basin. Resources and Environment in the Yangtze Basin, 2012, 21(1): 71-78. (in Chinese) |
[18] | 万民, 熊立华, 董磊华. 飞来峡流域基于栅格DEM的分布式水文模拟[J]. 武汉大学学报(工学版), 2010, 43(5): 549-553.
WAN Min, XIONG Lihua and DONG Leihua. Grid DEM-based distributed hydrological modeling for Feilaixia watershed. Engineering Journal of Wuhan University, 2010, 43(5): 549-553. (in Chinese) |
[19] | 曾凌, 熊立华. 东江流域分布式降水径流模拟研究[J]. 人民珠江, 2018, 39(11): 1-7, 21.
ZENG Ling, XIONG Lihua. Distributed rainfall-runoff simulation in Dongjiang basin. Pearl River, 2018, 39(11): 1-7, 21. (in Chinese) |
[20] | CHEN, S., XIONG, L., ZENG, L., et al. Distributed rainfall-runoff simulation for a large-scale karst catchment by incorporating landform and topography into the DDRM model parameters. Journal of Hydrology, 2022, 610: 127853.
https://doi.org/10.1016/j.jhydrol.2022.127853 |
[21] | DRAPER, C. S., WALKER, J. P., STEINLE, P. J., et al. An evaluation of AMSR-E derived soil moisture over Australia. Remote Sensing of Environment, 2009, 113(4): 703-710. https://doi.org/10.1016/j.rse.2008.11.011 |
[22] | JACKSON, T. J., COSH, M. H., BINDLISH, R., et al. Validation of ad-vanced microwave scanning radiometer soil moisture products. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(12): 4256-4272.
https://doi.org/10.1109/TGRS.2010.2051035 |
[23] | ALBERGEL, C., CALVET, J. C., DE ROSNAY, P., et al. Cross-evaluation of modelled and remotely sensed surface soil moisture with in situ data in southwestern France. Hydrology and Earth System Sciences, 2010, 14(11): 2177.
https://doi.org/10.5194/hess-14-2177-2010 |
[24] | REICHLE, R. H., KOSTER, R. D. Bias reduction in short records of satellite soil moisture. Geophysical Research Letters, 2004, 31(19): L19501.1-L19501.4. https://doi.org/10.1029/2004GL020938 |
[25] | BROCCA, L., MORAMARCO, T., MELONE, F., et al. Assimilation of surface-and root-zone ASCAT soil moisture products into rainfall-runoff modeling. IEEE Transactions on Geoscience and Remote Sensing, 2011, 50(7): 2542-2555.
https://doi.org/10.1109/TGRS.2011.2177468 |
[26] | WAGNER, W., LEMOINE, G. and ROTT, H. A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sensing of Environment, 1999, 70(2): 191-207. https://doi.org/10.1016/S0034-4257(99)00036-X |
[27] | BLANEY, H. F., CRIDDLE, W. D. Determining consumptive use and irrigation water requirements. Washington DC: US Department of Agriculture, 1962. |
[28] | 蒋冲, 王飞, 穆兴民, 等. 土壤湿度指数在黄土高原的适宜性评价[J]. 灌溉排水学报, 2012, 31(3): 31-36.
JIANG Chong, WANG Fei, MU Xingmin, et al. Evaluation of the soil water index and surface soil moisture on the Loess Plateau. Journal of Irrigation and Drainage, 2012, 31(3): 31-36. (in Chinese) |