全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于前子模型的一种可能的电荷形成机制
A Possible Charge Forming Mechanism Based on the Preon Model

DOI: 10.12677/MP.2023.131001, PP. 1-7

Keywords: 前子,准正则模,克尔黑洞,三重态

Full-Text   Cite this paper   Add to My Lib

Abstract:

前子指的是亚夸克/亚轻子粒子。前子被提出后,人们对它产生了很大的兴趣。不过,目前基于前子模型的一些工作存在着一些问题,包括缺少动力学的框架以及缺少对模型的深层解释。在本文中,我们将尝试把前子模型与普朗克尺度下的克尔黑洞分析联系起来,这可以使得模型更完整、更合理。这种联系是基于普朗克尺度下克尔黑洞的准正则模的分析。我们发现,取磁量子数为2时,其微绕形成的准正则模具有一个相应于e/3的实部。注意到还存在一个刻画面积的三重简并态,于是我们可以用两个量子数,也就是磁量子数和面积三重态量子数,去得到标准模型夸克和轻子的电荷数。
Preons are named for sub-quark/sub-lepton particles. It has attracted a lot of interest ever since it was proposed. However, the present work based on the idea of preons has several problems, including the lack of a dynamical framework and the lack of an explanation. In this paper, we will try to connect the preon model with Kerr black hole analysis in the Planck scale to make it more com-plete and reasonable. It is based on the quasi normal mode analysis of the Kerr black hole in the Planck scale. We find, by perturbation, the quasi normal mode has the real part corresponding to e/3 when the magnetic momentum quantum number is equal to two. By noticing that there is one more triplet number describing degenerated area triplet, we find that we could use the two numbers, that is, the magnetic momentum quantum number and the area triplet number, to get the charges for standard model quarks and leptons.

References

[1]  Pati, J.C. and Salam, A. (1974) Lepton Number as the Fourth “Color”. Physical Review D, 10, 275-289.
https://doi.org/10.1103/PhysRevD.10.275
[2]  Terazawa, H. and Akama, K. (1980) Subquark Pregeometry with Spontaneously Broken Conformal Invariance. Physics Letters B, 97, 81-83.
https://doi.org/10.1016/0370-2693(80)90551-1
[3]  Akama, K. and Oda, I. (1991) Topological Pregauge-Pregeometry. Physics Letters B, 259, 431-435.
https://doi.org/10.1016/0370-2693(91)91652-C
[4]  Dimopolous, S., Raby, S. and Susskind, L. (1980) Light Composite Fermions. Nuclear Physics B, 173, 208-228.
https://doi.org/10.1016/0550-3213(80)90215-1
[5]  Babu, K. and Pati, J. (1993) Unity of Forces at the Preon Level. Physical Review D, 48, R1921.
https://doi.org/10.1103/PhysRevD.48.R1921
[6]  Harari, H. (1979) A Schematic Model of Quarks and Leptons. Physics Letters B, 86, 83-86.
https://doi.org/10.1016/0370-2693(79)90626-9
[7]  Shupe, M. (1979) A Composite Model of Leptons and Quarks. Physics Letters B, 86, 87-92.
https://doi.org/10.1016/0370-2693(79)90627-0
[8]  Bilson-Thompson, S.O. (2005) A Topological Model of Composite Preons. ArXiv: hep-ph/0503213.
[9]  ?enczykowski, P. (2008) The Harari-Shupepreon Model and Non-relativistic Quantum Phase Space. Physics Letters B, 660, 567-572.
https://doi.org/10.1016/j.physletb.2008.01.045
[10]  Sandin, F. and Hansson, J. (2007) Observational Legacy of Preon Stars: Probing New Physics beyond the CERN LHC. Physical Review D, 76, Article ID: 125006.
https://doi.org/10.1103/PhysRevD.76.125006
[11]  Regge, T. and Wheeler, J. (1957) Stability of a Schwarzschild Singularity. Physical Review, 108, 1063-1069.
https://doi.org/10.1103/PhysRev.108.1063
[12]  Zerilli, F. (1970) Effective Potential for Even-Parity Regge-Wheeler Gravitational Perturbation Equations. Physical Review Letters, 24, 737-738.
https://doi.org/10.1103/PhysRevLett.24.737
[13]  Sasaki, M. and Nakamura, T. (1981) Theregge-Wheeler Equation with Sources for both Even and Odd Parity Perturbations of the Schwarzschild Geometry. Physics Letters A, 87, 85-88.
https://doi.org/10.1016/0375-9601(81)90568-5
[14]  Newman, E. and Penrose, R. (1962) An Approach to Gravita-tional Radiation by a Method of Spin Coefficients. Journal of Mathematical Physics, 3, 566-578.
https://doi.org/10.1063/1.1724257
[15]  夏同生. 形成最小单位电荷的一种可能的物理机制[J]. 现代物理, 2017, 7(5): 183-189.
[16]  Carroll, S. (2004) Spacetime and Geometry: An Introduction to General Relativity. Addison Wesley, Boston.
[17]  Hod, S. (1998) Bohr’s Correspondence Principle and the Area Spectrum of Quantum Black Holes. Physical Review Letters, 81, 4293-4296.
https://doi.org/10.1103/PhysRevLett.81.4293
[18]  Teukolsky, S. (1973) Perturbations of a Rotating Black Hole. I. Fundamental Equations for Gravitational, Electromagnetic, and Neutrino-Field Perturbations. The Astrophysical Journal, 185, 635-647.
https://doi.org/10.1086/152444
[19]  Leaver, E. (1986) Solutions to a Generalized Spheroidal Wave Equation: Teukolsky’s Equations in General Relativity, and the Two-Center Problem in Molecular Quantum Mechanics. Journal of Mathematical Physics, 27, 1238-1265.
https://doi.org/10.1063/1.527130
[20]  Hartle, J. and Wilkins, D. (1974) Analytic Properties of the Teukolsky Equa-tion. Communications in Mathematical Physics, 38, 47-63.
https://doi.org/10.1007/BF01651548
[21]  Detweiler, S. (1978) Black Holes and Gravitational Waves. I-Circular Orbits about a Rotating Hole. The Astrophysical Journal, 225, 687-693.
https://doi.org/10.1086/156529
[22]  Detweiler, S. and Ipser, J. (1973) The Stability of Scalar Perturba-tions of a Kerr-Metric Black Hole. The Astrophysical Journal, 185, 675-683.
https://doi.org/10.1086/152446
[23]  Yang, H., Zimmerman, A., Zenginoglu, A., Zhang, F., Berti, E. and Chen, Y. (2013) Quasinormal Modes of Nearly Extremal Kerr Spacetimes: Spectrum Bifurcation and Power-Law Ringdown. Physical Review D, 88, Article ID: 044047.
https://doi.org/10.1103/PhysRevD.88.044047
[24]  Berti, E., Cardoso, V., Kokkotas, K. and Onozawa, H. (2003) Highly Damped Quasinormal Modes of Kerr Black Holes. Physical Review D, 68, Article ID: 124018.
https://doi.org/10.1103/PhysRevD.68.124018
[25]  Pani, P., Berti, E. and Gualtieri, L. (2013) Scalar, Electromag-netic, and Gravitational Perturbations of Kerr-Newman Black Holes in the Slow-Rotation Limit. Physical Review D, 88, Article ID: 064048.
https://doi.org/10.1103/PhysRevD.88.064048
[26]  Villani, M. (2021) Quasi-Normal Mode of a Planck Star. An-nals of Physics, 433, Article ID: 168600.
https://doi.org/10.1016/j.aop.2021.168600
[27]  Pierini, L. and Gualtieri, L. (2022) Quasinormal Modes of Rotating Black Holes in Einstein-Dilaton Gauss-Bonnet Gravity: The Second Order in Rotation. Physical Review D, 106, Article ID: 104009.
https://doi.org/10.1103/PhysRevD.106.104009
[28]  Keshet, U. and Hod, S. (2007) Analytic Study of Rotating Black-Hole Quasinormal Modes. Physical Review D, 76, R061501.
https://doi.org/10.1103/PhysRevD.76.061501
[29]  Kao, H. and Tomino, D. (2008) Quasinormal Modes of Kerr Black Holes in Four and Higher Dimensions. Physical Review D, 77, Article ID: 127503.
https://doi.org/10.1103/PhysRevD.77.127503
[30]  Berti, E., Cardoso, V. and Yoshida, S. (2004) Highly Damped Quasinormal Modes of Kerr Black Holes: A Complete Numerical Investigation. Physical Review D, 69, Article ID: 124018.
https://doi.org/10.1103/PhysRevD.69.124018
[31]  Bekenstein, J.D. (1999) Proceedings of the Eight Marcel Grossmann Meeting. World Scientific, Singapore.
[32]  Penrose, R. (1996) On Gravity’s Role in Quantum State Reduction. General Relativity and Gravitation, 28, 581-600.
https://doi.org/10.1007/BF02105068
[33]  Carlip, S. (2001) Quantum Gravity: A Progress Report. Reports on Progress in Physics, 64, 885-942.
https://doi.org/10.1088/0034-4885/64/8/301

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133