全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

脑科学视野下的虚拟现实辅助语言学习
Virtual Reality-Assisted Language Learning from the Perspective of Brain Science

DOI: 10.12677/ML.2023.111012, PP. 81-90

Keywords: 虚拟现实,第二语言习得,沉浸式教学,语言认知,神经机制
Virtual Reality
, Second Language Acquisition, Immersion, Language Cognition, Neural Mechanisms

Full-Text   Cite this paper   Add to My Lib

Abstract:

虚拟现实技术(virtual reality, VR)作为近年来飞速发展的新兴技术,其与场景的可互动性,寓教于乐的趣味性以及所营造环境的沉浸性等特点,使许多研究者开始探究虚拟现实技术在第二语言学习中可能产生的影响。此外,有研究表明第二语言学习会引起大脑功能与结构的变化,这为检验虚拟现实技术对第二语言学习的影响提供了大脑神经机制方面的标准。本文搜集并回顾了现有的第二语言学习大脑机制研究,对使用虚拟现实技术辅助第二语言教学对学习者外语学习产生的影响进行述评。最后本文得出虚拟现实技术对初级二语学习者语音、词汇、句法方面的学习均有一定积极作用,学习者在沉浸式环境中能取得更为理想的学习效果的结论,为当前的第二语言教学提供了新的思路。
Virtual reality (VR) is an emerging technology that has developed rapidly in recent years. Its interactivity with scenarios, its fun and educational nature, and the immersive nature of the environment it creates have led many researchers to explore the possible impact of VR in second language learning. In addition, research has shown that second language learning causes changes in brain function and structure, which provides a criterion for examining the neural mechanisms of the brain in relation to the impact of virtual reality on second language learning. This paper collects and reviews existing research on the brain mechanisms of second language learning and reviews the impact of using virtual reality to assist second language teaching on learners’ foreign language learning. The paper concludes that virtual reality technology has a positive effect on the phonological, lexical and syntactic learning of primary second language learners, and that learners can achieve better learning outcomes in an immersive environment, providing new ideas for current second language teaching.

References

[1]  朱晔, 王陈欣, 金慧. 智能时代计算机辅助的语言学习研究[J]. 外语教学, 2021, 42(5): 51-56.
[2]  Levis, D. (1997) Los videojuegos, un fenómeno de masas. Paidós, Barcelona.
[3]  Bricken, W. (1990) Virtual Reality: Directions of Growth. Human Interface Technology Laboratory, University of Washington, Seattle.
[4]  Appel, C. and Mullen, T. (2000) Pedagogical Considerations for a Web-Based Tandem Language Learning Environment. Computers and Education, 34, 291-308.
https://doi.org/10.1016/S0360-1315(99)00051-2
[5]  Barsalou, L.W. (2008) In Embodied Grounding: Social, Cognitive, Affective, and Neuroscientific Approaches. Cambridge University Press, Cambridge.
[6]  Chomsky, N. (1981) Lectures on Government and Binding. Foris Publications, Dordrecht.
[7]  Fodor, J. A. (1983) The Modularity of Mind. MIT Press, Cambridge.
https://doi.org/10.7551/mitpress/4737.001.0001
[8]  Meltzoff, A., Kuhl, P., Movellan, J. and Sejnowski, T. (2009) Foundations for a New Science of Learning. Science, 325, 284-288.
https://doi.org/10.1126/science.1175626
[9]  Caldwell-Harris, C.L. (2021) The Large Picture of Engaged Learning. Bilingualism: Language and Cognition, 25, 379-380.
https://doi.org/10.1017/S1366728921000791
[10]  Mathias, B., Waibel, A., Hartwigsen, G., et al. (2021) Moror Cortex Causally Contributes to Vocabulary Translation following Sensorimotor-Enriched Training. Journal of Neuroscience, 41, 8618-8631.
https://doi.org/10.1523/JNEUROSCI.2249-20.2021
[11]  Costello and Patrick, J. (1997) Health and Safety Issues Associated with Virtual Reality: A Review of Current Literature. Advisory Group on Computer Graphics, Loughborough.
[12]  Jerald and Jason (2016) The VR Book: Human-Centered Design for Virtual Reality. ACM Books, New York.
https://doi.org/10.1145/2897826.2927320
[13]  Milgram, P. and Kishino, F. (1994) A Taxonomy of Mixed Reality Visual Displays. IEICE Transactions on Information and Systems, E77-D, 1321-1329.
[14]  Vaquero, L., Rodríguez-Fornells, A. and Reiterer, S.M. (2017) The Left, the Better: White-Matter Brain Integrity Predicts Foreign Language Imitation Ability. Cerebral Cortex, 27, 3906-3917.
https://doi.org/10.1093/cercor/bhw199
[15]  García-Pentón, L., Perez Fernandez, A., Iturria-Medina, Y., et al. (2014) Anatomical Connectivity Changes in the Bilingual Brain. Neuroimage, 84, 495-504.
https://doi.org/10.1016/j.neuroimage.2013.08.064
[16]  Callan, D.E., Jones, J.A., Callan, A.M. and Aka-hane-Yamada, R. (2004) Phonetic Perceptual Identification by Native- and Second-Language Speakers Differentially Activates Brain Regions Involved with Acoustic Phonetic Processing and Those Involved with Articulatory-Auditory/Orosensory Internal Models. Neuroimage, 22, 1182-1194.
https://doi.org/10.1016/j.neuroimage.2004.03.006
[17]  Zheng, Z.Z., Munhall, K.G. and Johnsrude, I.S. (2010) Functional Overlap between Regions Involved in Speech Perception and in Monitoring One’s Own Voice during Speech Production. Journal of Cognitive Neuroscience, 22, 1770-1781.
https://doi.org/10.1162/jocn.2009.21324
[18]  Stein, M., Winkler, C., Kaiser, A., et al. (2014) Structural Brain Changes Related to Bilingualism: Does Immersion Make a Difference? Frontiers in Psychology, 5, 1116.
https://doi.org/10.3389/fpsyg.2014.01116
[19]  Martensson, J., Eriksson, J., Bodammer, N.C., et al. (2012) Growth of Language-Related Brain Areas after Foreign Language Learning. Neuroimage, 63, 240-244.
https://doi.org/10.1016/j.neuroimage.2012.06.043
[20]  Liu H, Hu, Z., Guo, T. Peng, D. (2010) Speaking Words in Two Languages with One Brain: Neural Overlap and Dissociation. Brain Research, 1316, 75-82.
https://doi.org/10.1016/j.brainres.2009.12.030
[21]  Perani, D., Saccuman, M.C., Scifo, P., et al. (2011) Neural Language Networks at Birth. Proceedings of the National Academy of Sciences of the United States of America, 108, 16056-16061.
https://doi.org/10.1073/pnas.1102991108
[22]  Kuhl, P.K., Stevenson, J., Corrigan, N.M., et al. (2016) Neuroimaging of the Bilingual Brain: Structural Brain Correlates of Listening and Speaking in a Second Language. Brain and Language, 162, 1-9.
https://doi.org/10.1016/j.bandl.2016.07.004
[23]  Pliatsikas, C., Johnstone, T. and Marinis, T. (2017) An fMRI Study on the Processing of Long-Distance Wh-Movement in a Second Language. Glossa, 2, 1-22.
https://doi.org/10.5334/gjgl.95
[24]  Abutalebi, J., Della Rosa, P.A., et al. (2013) The Role of the Left Putamen in Multilingual Language Production. Brain and Language, 125, 307-315.
https://doi.org/10.1016/j.bandl.2012.03.009
[25]  Price, C.J., Green, D.W. and Von Studnitz, R. (1999) A Functional Imaging Study of Translation and Language Switching. Brain, 122, 2221-2235.
https://doi.org/10.1093/brain/122.12.2221
[26]  Dodel, S.N., Golestani, C., et al. (2005) Condition-Dependent Functional Connectivity: Syntax Networks in Bilinguals. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 921-935.
https://doi.org/10.1098/rstb.2005.1653
[27]  Golestani, N., Alario, F.-X., Meriaux, S., et al. (2006) Syntax Production in Bilinguals. Neuropsychologia, 44, 1029-1040.
https://doi.org/10.1016/j.neuropsychologia.2005.11.009
[28]  Abutalebi, J., Annoni, J.-M., Zimine, I., et al. (2008) Language Control and Lexical Competition in Bilinguals: An Event-Related FMRI Study. Cerebral Cortex, 18, 1496-1505.
https://doi.org/10.1093/cercor/bhm182
[29]  Pliatsikas, C., DeLuca, V., Moschopoulou, E. and Saddy, J.D. (2016) Immersive Bilingualism Reshapes the Core of the Brain. Brain Structure and Function, 222, 1785-1795.
https://doi.org/10.1007/s00429-016-1307-9
[30]  Simmonds, A.J., Wise, R.J.S. and Leech, R. (2011) Two Tongues, One Brain: Imaging Bilingual Speech Production. Frontiers in Psychology, 2, 166.
https://doi.org/10.3389/fpsyg.2011.00166
[31]  Tettamanti, M., Moro, A. and Messa, C. (2005) Basal Ganglia and Language: Phonology Modulates Dopaminergic Release. Neuroreport, 16, 397-401.
https://doi.org/10.1097/00001756-200503150-00018
[32]  Burgaleta, M., Sanjuan, A., Ventura-Campos, N., et al. (2016) Bilingualism at the Core of the Brain. Structural Differences between Bilinguals and Monolinguals Revealed by Subcortical Shape Analysis. Neuroimage, 125, 437-445.
https://doi.org/10.1016/j.neuroimage.2015.09.073
[33]  Abutalebi, J. and Green, D.W. (2016) Neuroimaging of Language Control in Bilinguals: Neural Adaptation and Reserve. Bilingualism: Language and Cognition, 19, 689-698.
https://doi.org/10.1017/S1366728916000225
[34]  Yang, J., Gates, K.M., Molenaar, P. and Li, P. (2015) Neural Changes Underlying Successful Second Language Word Learning: An fMRI Study. Journal of Neurolinguistics, 33, 29-49.
https://doi.org/10.1016/j.jneuroling.2014.09.004
[35]  Kuhl, P., Tsao, F.M. and Liu, H.M. (2003) Foreign-Language Experience in Infancy: Effects of Short-Term Exposure and Social Interaction on Phonetic Learning. PNAS, 100, 9096-9101.
https://doi.org/10.1073/pnas.1532872100
[36]  Li, P. and Jeong, H. (2020) The Social Brain of Language: Grounding Second Language Learning in Social Interaction. Science of Learning, 5, 1-9.
https://doi.org/10.1038/s41539-020-0068-7
[37]  Jeong, H., Sugiura, M., Sassa, Y., et al. (2010) Learning Second Language Vocabulary: Neural Dissociation of Situation-Based Learning and Text-Based Learning. NeuroImage, 50, 802-809.
https://doi.org/10.1016/j.neuroimage.2009.12.038
[38]  Legault, J., Zhao, J., Chi, Y., et al. (2019) Immersive Virtual Reality as an Effective Tool for Second Language Vocabulary Learning. Language, 4, 1-32.
https://doi.org/10.3390/languages4010013
[39]  Legault, J., Fang, S.Y., Lan, Y.J. and Li, P. (2019) Structural Brain Changes as a Function of Second Language Vocabulary Training: Effects of Learning Context. Brain and Cognition, 134, 90-102.
https://doi.org/10.1016/j.bandc.2018.09.004
[40]  Frenck-Mestre, C., Anton, J.L., Roth, M., et al. (2005) Articulation in Early and Late Bilinguals’ Two Languages: Evidence from Functional Magnetic Resonance Imaging. NeuroReport, 16, 761-765.
https://doi.org/10.1097/00001756-200505120-00021
[41]  Hickok, G. and Poeppel, D. (2007) The Cortical Organization of Speech Processing. Nature Reviews. Neuroscience, 8, 393-402.
https://doi.org/10.1038/nrn2113
[42]  Hofstetter, S., Friedmann, N. and Assaf, Y. (2016) Rapid Language-Related Plasticity: Microstructural Changes in the Cortex after a Short Session of New Word Learning. Brain Structure and Function, 222, 1231-1241.
https://doi.org/10.1007/s00429-016-1273-2
[43]  Petersson, K.M., Folia, V. and Hagoort, P. (2012) What Artificial Grammar Learning Reveals about the Neurobiology of Syntax. Brain and Language, 120, 83-95.
https://doi.org/10.1016/j.bandl.2010.08.003
[44]  Stein, M., Federspiel, A., Koenig, T., et al. (2012) Structural Plasticity in the Language System Related to Increased Second Language Proficiency. Cortex, 48, 458-465.
https://doi.org/10.1016/j.cortex.2010.10.007
[45]  Veroude, K., Norris, D.G., Shumskaya, E., et al. (2010) Functional Connectivity between Brain Regions Involved in Learning Words of a New Language. Brain and Language, 113, 21-27.
https://doi.org/10.1016/j.bandl.2009.12.005
[46]  Morgan-Short, K. (2007) A Neurolinguistic Investigation of Late-Learned Second Language Knowledge: The Effects of Explicit and Implicit Training Conditions. Georgetown University, Washington DC.
[47]  黄嫣, 李霄翔. 人工语言在二语习得研究中的应用: 现状与展望[J]. 外语界, 2020(4): 54-62.
[48]  Norris, J.M. and Ortega, L. (2000) Effectiveness of L2 Instruction: A Research Synthesis and Metanalysis. Language Learning, 50, 417-528.
https://doi.org/10.1111/0023-8333.00136
[49]  Morgan-Short, K., Steinhauer, K., et al. (2012) Explicit and Implicit Second Language Training Differentially Affect the Achievement of Native-Like Brain Activation Patterns. Journal of Cognitive Neuroscience, 24, 933-947.
https://doi.org/10.1162/jocn_a_00119
[50]  Morgan-Short, K., Finger, I., et al. (2012) Second Language Processing Shows Increased Native-Like Neural Responses after Months of No Exposure. PLOS ONE, 7, e32974.
https://doi.org/10.1371/journal.pone.0032974
[51]  Morgan-Short, K., et al. (2015) A View of the Neural Representation of Second Language Syntax through Artificial Language Learning under Implicit Contexts of Exposure. Studies in Second Language Acquisition, 37, 383-419.
https://doi.org/10.1017/S0272263115000030
[52]  Pliatsikas, C., Johnstone, T. and Marinis, T. (2014) Grey Matter Volume in the Cerebellum Is Related to the Processing of Grammatical Rules in a Second Language: A Structural Voxel-Based Morphometry Study. Cerebellum, 13, 55-63.
https://doi.org/10.1007/s12311-013-0515-6
[53]  Pliatsikas, C., Johnstone, T. and Marinis, T. (2014) fMRI Evidence for the Involvement of the Procedural Memory System in Morphological Processing of a Second Language. PLOS ONE, 9, e97298.
https://doi.org/10.1371/journal.pone.0097298
[54]  Batterink, L. and Neville, H. (2013) Implicit and Explicit Second Language Training Recruit Common Neural Mechanisms for Syntactic Processing. Journal of Cognitive Neuroscience, 25, 936-951.
https://doi.org/10.1162/jocn_a_00354
[55]  Goo, J., et al. (2015) Implicit and Explicit Instruction in L2 Learning. In: Rebuschat, P., Ed., Implicit and Explicit Learning of Languages, John Benjamins Publishing Company, Amsterdam, 443-482.
https://doi.org/10.1075/sibil.48.18goo
[56]  Ruiz, S., Tagarelli, K.M. and Rebuschat, P. (2018) Simultaneous Acquisition of Words and Syntax: Effects of Exposure Condition and Declarative Memory. Frontiers in Psychology, 9, 11.
https://doi.org/10.3389/fpsyg.2018.01168
[57]  Dhimolea, T.K., Kaplan-Rakowski, R. and Lin, L. (2022) A Systematic Review of Research on High-Immersion Virtual Reality for Language Learning. TechTrends, 66, 810-824.
https://doi.org/10.1007/s11528-022-00717-w
[58]  Andujar, A. and Buchner, J. (2019) The Potential of 3D Virtual Reality (VR) for Language Learning: An Overview. Proceedings of the 15th International Conference Mobile Learning, Utrecht, 11-13 April 2019, 153-156.
https://doi.org/10.33965/ml2019_201903R002
[59]  Li, M., Pan, Z., Sun, Y., et al. (2021) Virtual Reality in Foreign Language Learning: A Review of the Literature. 2021 IEEE 7th International Conference on Virtual Reality (ICVR), Foshan, 20-22 May 2021, 302-307.
https://doi.org/10.1109/ICVR51878.2021.9483842

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133