全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不同侧压力系数对隧道开挖稳定性影响的数值模拟研究
Numerical Simulation Study on the Influence of Different Lateral Pressure Coefficients on the Excavation Stability of Buried Tunnel

DOI: 10.12677/ME.2023.111008, PP. 59-68

Keywords: 隧道,侧压力系数,数值模拟,塑性区
Tunnel
, Lateral Pressure Coefficient, Numerical Simulation, Plastic Zone

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文以探究不同侧压力系数对隧道开挖围岩稳定性的影响规律为研究目标,采用FLAC3D有限差分软件建立直墙半圆拱隧道模型,通过在隧道关键位置处(隧道顶、底、两侧)布置位移监测点,研究不同测出压力系数条件下,隧道开挖后垂直位移、水平位移的变化规律;在总结隧道开挖后塑性区变化规律的基础上,进一步分析侧压力系数对隧道围岩稳定性的影响规律。研究结果表明:在其余条件保持不变情况下,侧压力系数与围岩塑性区、垂直应力、水平应力皆呈现正相关关系,侧压力系数越大、隧道开挖之后围岩越不稳定,且不稳定区域集中在拱顶、拱底与拱肩处。研究成果可为相似地质条件下隧道开挖过程中的围岩支护提供理论依据。
In this paper, the research goal is to explore the influence law of different lateral pressure coeffi-cients on the stability of surrounding rock in tunnel excavation. The model of a straight wall semi-circle arch tunnel is established by using FLAC3D finite difference software. By arranging dis-placement monitoring points at the key locations of the tunnel (top, bottom, both sides of the tun-nel), the change laws of vertical displacement and horizontal displacement after tunnel excavation under different measured pressure coefficients are studied; On the basis of summarizing the vari-ation law of plastic zone after tunnel excavation, the influence law of lateral pressure coefficient on the stability of tunnel surrounding rock is further analyzed. The research results show that the coefficient of lateral pressure is positively related to the plastic zone, vertical stress and horizontal stress of surrounding rock when other conditions remain unchanged. The larger the coefficient of lateral pressure is, the more unstable the surrounding rock is after tunnel excavation, and the unstable areas are concentrated at the vault, arch bottom and arch shoulder. The research results can provide a theoretical basis for surrounding rock support during tunnel excavation under sim-ilar geological conditions.

References

[1]  蒋洪胜, 侯学渊. 盾构掘进对隧道周围土层扰动的理论与实测分析[J]. 岩石力学与工程学报, 2003, 22(9): 1514-1520.
[2]  杨波. 浅埋隧道开挖引起的地面沉降研究[J]. 人民长江, 2016, 47(13): 71-75.
[3]  李守刚. 关山特长隧道高地应力下硬岩大变形规律研究[J]. 人民长江, 2015, 46(12) : 48-52.
[4]  王永德, 段汝健, 魏百术, 曹克磊. 双线盾构隧道地表沉降及管片圆周应力分析——以昆明地铁迎滇区段为例[J]. 人民长江, 2019, 50(S2): 103-107.
[5]  方超, 薛亚东, 葛嘉诚. 侧压力系数对高地应力隧道力学行为的影响分析[J]. 公路隧道, 2012(2): 23-26.
[6]  余莉, 尤哲敏, 陈建平, 孙洋, 郑维. 高地应力地区隧道围岩分级研究[J]. 现代隧道技术, 2015, 52(3): 23-30.
[7]  李仲奎, 戴荣, 姜逸明. FLAC3D分析中的初始应力场生成及在大型地下洞室群计算中的应用[J]. 岩石力学与工程学报, 2002, 21(Z2): 2387-2392.
[8]  陈育民, 徐鼎平. FLAC/FLAC3D基础与工程实例[M]. 北京: 中国水利水电出版社, 2013.
[9]  邹力, 彭雄志. 浅谈FLAC-3D的应用原理、优缺点及改进措施[J]. 四川建筑, 2007, 27(1): 152.
[10]  刘波, 韩彦辉. FLAC原理实例与应用指南[M]. 北京: 人民交通出版社, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133