全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cu负载花生壳生物炭对Cr(VI)的吸附性能研究
Adsorption Properties of Cr(VI) by Cu/Peanut Shell Biochar

DOI: 10.12677/MS.2023.131003, PP. 19-25

Keywords: 生物炭,Cu负载,Cr(VI)吸附
Biochar
, Cu Loading, Cr(VI) Adsorption

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文以花生壳作为原料,成功制备出了活化生物炭与Cu负载生物炭。所制备的活化生物炭对Cr(VI)去除量可达225.7 mg?g?1,Cu负载后,去除量达到244.74 mg?g?1。等温吸附模型的数据拟合结果表明活化生物炭更加符合Freundlich模型,而负载生物炭更加符合Langmiur模型,说明负载使得生物炭从非理想多层吸附向理想单层吸附转变。动力学吸附模型的数据拟合结果表明活化生物炭更加符合Elovich模型,而负载生物炭更加符合准二级动力学模型,说明负载后生物炭的吸附过程转变为化学吸附。本文的研究成果在废水中Cr(VI)的处理方面具有良好的应用前景。
In this paper, peanut shell was used as raw material to successfully prepare activated biochar and Cu-supported biochar. The maximum removal amount of Cr(VI) by the prepared activated biochar can reach 225.7 mg?g?1, and the maximum removal amount further reaches 244.74 mg?g?1 after Cu loading. The data fitting results of the isothermal adsorption model indicated that the loaded biochar changed from non-ideal multilayer adsorption to ideal single-layer adsorption. The data fitting results of the ki-netic adsorption model showed that the activated biochar was more consistent with the Elovich model, while the loaded biochar was more consistent with the quasi-second- order kinetic model, indicating that the adsorption process of biochar after loading was transformed into chemical ad-sorption. The research content of this paper has a good application prospect in the treatment of Cr(VI) in wastewater.

References

[1]  Aguilar-Pérez, K.M., Avilés-Castrillo, J.I., Ruiz-Pulido, G., et al. (2021) Nanoadsorbents in Focus for the Remediation of Environmentally-Related Contaminants with Rising Toxicity Concerns. Science of the Total Environment, 779, 146465.
https://doi.org/10.1016/j.scitotenv.2021.146465
[2]  Zamora-Ledezma, C., Negrete-Bolagay, D., Figueroa, F., et al. (2021) Heavy Metal Water Pollution: A Fresh Look about Hazards, Novel and Conventional Remediation Methods. Environmental Technology & Innovation, 22, 101504.
https://doi.org/10.1016/j.eti.2021.101504
[3]  Xie, J., Lei, C., Chen, W., et al. (2021) Catalytic Properties of Tran-sition Metals Modified Nanoscale Zero-Valent Iron for Simultaneous Removal of 4-Chlorophenol and Cr(VI): Efficacy, Descriptor and Reductive Mechanisms. Journal of Hazardous Materials, 403, 123827.
https://doi.org/10.1016/j.jhazmat.2020.123827
[4]  Dhal, B., Thatoi, H.N., Das, N.N., et al. (2013) Chemical and Microbial Remediation of Hexavalent Chromium from Contaminated Soil and Mining/Metallurgical Solid Waste: A Re-view. Journal of Hazardous Materials, 250-251, 272-291.
https://doi.org/10.1016/j.jhazmat.2013.01.048
[5]  Kumar, V. and Dwivedi, S.K. (2021) A Review on Accessible Techniques for Removal of Hexavalent CHROMIUM and Divalent Nickel from Industrial Wastewater: Recent Research and Future Outlook. Journal of Cleaner Production, 295, 126229.
https://doi.org/10.1016/j.jclepro.2021.126229
[6]  Kerur, S.S., Bandekar, S., Hanagadakar, M.S., et al. (2021) Removal of Hexavalent Chromium-Industry Treated Water and Wastewater: A Review. Materials Today: Proceedings, 42, 1112-1121.
https://doi.org/10.1016/j.matpr.2020.12.492
[7]  Mouedhen, G., Feki, M., De Petris-Wery, M., et al. (2009) Elec-trochemical Removal of Cr(VI) from Aqueous Media Using Iron and Aluminum as Electrode Materials: Towards a Bet-ter Understanding of the Involved Phenomena. Journal of Hazardous Materials, 168, 983-991.
https://doi.org/10.1016/j.jhazmat.2009.02.117
[8]  Mo, X., Yang, Z.H., Xu, H.Y., et al. (2015) Combination of Cathodic Reduction with Adsorption for Accelerated Removal of Cr(VI) through Reticulated Vitreous Carbon Electrodes Modified with Sulfuric Acid-Glycine Co-Doped Polyaniline. Journal of Hazardous Materials, 286, 493-502.
https://doi.org/10.1016/j.jhazmat.2015.01.002
[9]  Li, J., Fan, M.J., Li, M., et al. (2020) Cr(VI) Removal from Groundwater Using Double Surfactant-Modified Nanoscale Zero-Valent Iron (nZVI): Effects of Materials in Different Status. Science of the Total Environment, 717, 137112.
https://doi.org/10.1016/j.scitotenv.2020.137112
[10]  Zhang, Z.Y., Daniel, L.B., Lucía, A., et al. (2014) Separation and Recovery of Cr(III) and Cr(VI) Using Electrodeionization as an Efficient Approach. Separation & Purification Technology, 137, 86-93.
https://doi.org/10.1016/j.seppur.2014.09.030

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133