|
基于STIRPAT拓展模型的交通运输业碳排放测算与情景预测
|
Abstract:
随着我国双碳目标的提出,对交通运输行业碳排放进行测算并制定科学合理的发展路径对提前实现碳达峰有至关重要的作用。本文使用“自顶向下”的方法对2001~2019年中国交通运输碳排放进行测算,通过建立扩展的STIRPAT模型,对影响碳排放的几个主要因素作回归分析,结果表明人口规模、人均GDP、单位周转能耗对碳排放有正向影响,清洁能源占比和第三产业占比对碳排放有负向影响。最后考虑未来社会经济发展情况,对人口规模、经济水平和技术条件分别作高速发展和低速发展的预测,分别计算8种情景下未来交通运输碳排放情况。结果表明不同情景下的碳排放存在差异,保持人口低速增长,经济稳定增长和技术条件稳步提升可能是最适合中国交通低碳发展的道路。
With the introduction of China’s double carbon target, it is crucial to measure carbon emissions in the transportation industry and formulate a scientific and reasonable development path to achieve the carbon peak ahead of schedule. This paper uses a “top-down” approach to measure China’s transportation carbon emissions from 2001 to 2019. By establishing an extended STIRPAT model, the regression analysis of several major factors affecting carbon emissions shows that population size, GDP per capita, and energy consumption per unit of turnover have a positive effect on carbon emissions, while the share of clean energy and the share of tertiary industry have a negative effect on carbon emissions. Finally, considering the future socio-economic development, high and low development speeds are made for population size, economic level and technological conditions, and future transportation carbon emissions are calculated under eight scenarios respectively. The results show that there are differences in carbon emissions under different scenarios, and that maintaining low population growth, stable economic growth and steady improvement of technological conditions may be the most suitable path for low-carbon transportation development in China.
[1] | Gasbarro, F., Iraldo, F. and Daddi, T. (2017) The Drivers of Multinational Enterprises’ Climate Change Strategies: A Quantitative Study on Climate-Related Risks and Opportunities. Journal of Cleaner Production, 160, 8-26.
https://doi.org/10.1016/j.jclepro.2017.03.018 |
[2] | Bong, C.P.C., Lim, L.Y., Ho, W.S., et al. (2017) A Review on the Global Warming Potential of Cleaner Composting and Mitigation Strategies. Journal of Cleaner Production, 146, 149-157. https://doi.org/10.1016/j.jclepro.2016.07.066 |
[3] | Schleussner, C.-F., Lissner, T.K., Fischer, E.M., et al. (2016) Differential Climate Impacts for Policy-Relevant Limits to Global Warming: The Case of 1.5?C and 2??C. Earth System Dynamics, 7, 327-351.
https://doi.org/10.5194/esd-7-327-2016 |
[4] | 黄建平, 陈文, 温之平, 等. 新中国成立70年以来的中国大气科学研究: 气候与气候变化篇[J]. 中国科学: 地球科学, 2019, 49(10): 1607-1640. |
[5] | Rogelj, J., Popp, A., Calvin, K.V., et al. (2018) Scenarios towards Limiting Global Mean Temperature Increase below 1.5??C. Nature Climate Change, 8, 325-332. https://doi.org/10.1038/s41558-018-0091-3 |
[6] | 沙爱敏, 陈婷, 吕凡任, 王晓东. “双碳”目标下扬州交通碳排放量测算及分析[J]. 绿色科技, 2022, 24(15): 276-280. https://doi.org/10.16663/j.cnki.lskj.2022.15.014 |
[7] | 杨琦, 朱容辉, 赵小强. 中国交通运输业的碳排放情景预测模型[J]. 长安大学学报(自然科学版), 2014, 34(5): 77-83. https://doi.org/10.19721/j.cnki.1671-8879.2014.05.012 |
[8] | 卢娜, 曲福田, 冯淑怡, 邵雪兰. 基于STIRPAT模型的能源消费碳足迹变化及影响因素——以江苏省苏锡常地区为例[J]. 自然资源学报, 2011, 26(5): 814-824. |
[9] | 岳超, 王少鹏, 朱江玲, 方精云. 2050年中国碳排放量的情景预测——碳排放与社会发展IV [J]. 北京大学学报(自然科学版), 2010, 46(4): 517-524. https://doi.org/10.13209/j.0479-8023.2010.076 |
[10] | 史丹, 李鹏. “双碳”目标下工业碳排放结构模拟与政策冲击[J]. 改革, 2021(12): 30-44. |
[11] | 加快形成绿色低碳运输方式[EB/OL]. 中国政府网. http://www.gov.cn/xinwen/2022-01/14/content_5668085.htm, 2022-11-02. |
[12] | Saija, S. and Romano, D. (2002) A Methodology for the Estimation of Road Transport Air Emissions in Urban Areas of Italy. Atmospheric Environment, 36, 5377-5383. https://doi.org/10.1016/S1352-2310(02)00488-0 |
[13] | 蔡博峰, 曹东, 刘兰翠, 等. 中国道路交通二氧化碳排放研究[J]. 中国能源, 2011, 33(4): 26-30. |
[14] | 薛进军, 赵忠秀, 戴彦德, 等. 中国低碳经济发展报告(2011) [M]. 北京: 社会科学文献出版社, 2011. |
[15] | 刘妍慧, 栗洋. 湖北省交通运输业碳排放测算及影响因素分解[J]. 统计与决策, 2022, 38(15): 88-92.
https://doi.org/10.13546/j.cnki.tjyjc.2022.15.016 |
[16] | He, K., Huo, H., Zhang, Q., et al. (2005) Oil Consumption and CO2 Emissions in China’s Road Transport: Current Status, Future Trends, and Policy Implications. Energy Policy, 33, 1499-1507.
https://doi.org/10.1016/j.enpol.2004.01.007 |
[17] | 陈露露, 赵小风, 赖力. 江苏省交通运输业碳排放预测及减排情景分析研究[J]. 环境科学与管理, 2015, 40(10): 13-17. |
[18] | Timilsina, G.R. and Shrestha, A. (2009) Factors Affecting Transport Sector CO2 Emissions Growth in Latin American and Caribbean Countries: An LMDI Decomposition Analysis. International Journal of Energy Research, 33, 396-414.
https://doi.org/10.1002/er.1486 |
[19] | Kim, S. (2019) Decomposition Analysis of Greenhouse Gas Emissions in Korea’s Transportation Sector. Sustainability, 11, Article No. 1986. https://doi.org/10.3390/su11071986 |
[20] | 张国兴, 苏钊贤. 黄河流域交通运输碳排放的影响因素分解与情景预测[J]. 管理评论, 2020, 32(12): 283-294.
https://doi.org/10.14120/j.cnki.cn11-5057/f.2020.12.022 |
[21] | 张乐勤, 陈素平, 荣慧芳, 许信旺. 基于IPAT模型的安徽省不同情景碳排放趋势测度分析[J]. 地理与地理信息科学, 2012, 28(2): 60-64+93. |
[22] | 邓小乐, 孙慧. 基于STIRPAT模型的西北五省区碳排放峰值预测研究[J]. 生态经济, 2016, 32(9): 36-41. |
[23] | 洪竞科, 李沅潮, 蔡伟光. 多情景视角下的中国碳达峰路径模拟——基于RICE-LEAP模型[J]. 资源科学, 2021, 43(4): 639-651. |
[24] | 常征, 潘克西. 基于LEAP模型的上海长期能源消耗及碳排放分析[J]. 当代财经, 2014(1): 98-106.
https://doi.org/10.13676/j.cnki.cn36-1030/f.2014.01.001 |
[25] | Liu, D. and Xiao, B. (2018) Can China Achieve Its Carbon Emission Peaking? A Scenario Analysis Based on STIRPAT and System Dynamics Model. Ecological Indicators, 93, 647-657.
https://doi.org/10.1016/j.ecolind.2018.05.049 |
[26] | 黄蕊, 王铮, 丁冠群, 等. 基于STIRPAT模型的江苏省能源消费碳排放影响因素分析及趋势预测[J]. 地理研究, 2016, 35(4): 781-789. |
[27] | 张巍. 基于STIRPAT模型的西安市碳足迹预测和情景分析[J]. 生态经济, 2021, 37(4): 25-29. |
[28] | 侯晨. 基于系统动力学的湖北省交通运输业碳排放仿真研究[D]: [硕士学位论文]. 武汉: 武汉理工大学, 2020. |
[29] | 彭天铎, 袁志逸, 任磊, 欧训民. 中国碳中和目标下交通部门低碳发展路径研究[J]. 汽车工程学报, 2022, 12(4): 351-359. |
[30] | 许宪春, 唐雅, 靖骐亦. 2021年中国经济形势分析与2022年展望[J]. 经济学动态, 2022(2): 3-17. |
[31] | 张现苓, 翟振武, 陶涛. 中国人口负增长: 现状、未来与特征[J]. 人口研究, 2020, 44(3): 3-20. |
[32] | 国务院发展研究中心“国际经济格局变化和中国战略选择”课题组, 李伟, 隆国强, 等. 未来15年国际经济格局变化和中国战略选择[J]. 管理世界, 2018, 34(12): 1-12. https://doi.org/10.19744/j.cnki.11-1235/f.2018.0028 |
[33] | 胡鞍钢. 中国经济发展大趋势[J]. 人民论坛, 2017(14): 16-19. https://doi.org/10.16619/j.cnki.rmlt.2017.14.005 |
[34] | 罗仕华, 胡维昊, 刘雯, 等. 中国2060碳中和能源系统转型路径研究[J]. 中国科学: 技术科学, 2022: 1-22. |
[35] | 电力规划设计总院. 《中国能源发展报告2022》: 我国能源绿色低碳转型加快推进[J]. 经济导刊, 2022(7): 6. |