全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

加压流体提取文冠果种子油脂的过程分析
Analysis on Extraction Process of Pressurized Fluid from Xanthoceras Sorbifolia Seeds

DOI: 10.12677/HJFNS.2023.121001, PP. 1-8

Keywords: 文冠果种子,加压流体,提取动力学,微观显影
Xanthoceras sorbifolia Seed
, Pressurized Fluid, Extraction Kinetics, Visualization

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文阐述了文冠果种子资源开发的意义,综述了加压流体提取种子油动力学模型。为了进一步阐明加压流体提取动力学过程,探讨了显微技术在提取动力学中的应用。旨在构建一套新型加压流体提取技术,对其进行动力学建模,此外,将可视化微观显影技术应用于加压流体提取动力学中,以便更直观地观察到油脂释放过程,为传统动力学过程提供依据,并有望将动力学模型应用于大规模的实际生产操作中。
This paper describes the significance of the development of the seed re-sources of Xanthoceras sorbifolia and reviews a kinetic model for the extraction of seed oil by pres-surized fluids. To further elucidate the kinetics of pressurized fluid extraction, the application of microscopy in extraction kinetics is explored. The aim is to construct a novel set of pressurized fluid extraction techniques for kinetic modeling. In addition, visual microscopic development techniques are applied to pressurized fluid extraction kinetics in order to provide a more intuitive view of the oil release process, to provide a basis for traditional kinetic processes, and to hopefully apply the kinetic model to large-scale practical production operations.

References

[1]  Zhang, X., Zhang, G.J., Du, L., et al. (2019) Comparative Study on the Extraction of Xanthoceras sorbifolia Bunge (Yellow Horn) Seed Oil Using Subcritical n-Butane, Supercritical CO2, and the Soxhlet Method. LWT, 111, 548-554.
https://doi.org/10.1016/j.lwt.2019.05.078
[2]  Wu, Y., Yuan, W.Q., Han, X., et al. (2020) Integrated Analysis of Fatty Acid, Sterol and Tocopherol Components of Seed Oils Obtained from Four Varieties of Industrial and Environ-mental Protection Crops. Industrial Crops and Products, 154, Article ID: 112655.
https://doi.org/10.1016/j.indcrop.2020.112655
[3]  Li, J., Zu, Y.-G., Luo, M., et al. (2013) Aqueous Enzymatic Process Assisted by Microwave Extraction of Oil from Yellow Horn (Xanthoceras sorbifolia Bunge.) Seed Kernels and Its Quality Evaluation. Food Chemistry, 138, 2152-2158.
https://doi.org/10.1016/j.foodchem.2012.12.011
[4]  Qu, X.J., Fu, Y., Luo, M., et al. (2013) Acidic pH Based Microwave-Assisted Aqueous Extraction of Seed Oil from Yellow Horn (Xanthoceras sorbifolia Bunge.). Industrial Crops & Products, 43, 420-426.
https://doi.org/10.1016/j.indcrop.2012.07.055
[5]  Zhang, Y.G., et al. (2010) Supercritical Carbon Dioxide Extrac-tion of Seed Oil from Yellow Horn (Xanthoceras sorbifolia Bunge.) and Its Anti-Oxidant Activity. Bioresource Tech-nology, 101, 2537-2544.
https://doi.org/10.1016/j.biortech.2009.11.082
[6]  王芳, 林洁茹, 单姝婷, 潘佳佳, 邓刚. 二氧化碳膨胀乙醇提取香樟精油的工艺研究[J]. 中国粮油学报, 2020, 35(10): 125-130.
[7]  Melreles, M., Zahedi, G. and Hatami, T. (2009) Mathematical Modeling of Supercritical Fluid Extraction for Obtaining Extracts from Vetiver Root. Journal of Supercritical Fluids, 49, 23-31.
https://doi.org/10.1016/j.supflu.2008.12.009
[8]  Sovová, H. (1994) Rate of the Vegetable Oil Extraction with Supercritical CO2—I. Modelling of Extraction Curves. Chemical Engineering Science, 49, 409-414.
https://doi.org/10.1016/0009-2509(94)87012-8
[9]  Santos, K.A., Silva, E. and Silva, C.D. (2020) Su-percritical CO2 Extraction of Favela (Cnidoscolus quercifolius) Seed Oil: Yield, Composition, Antioxidant Activity, and Mathematical Modeling. Journal of Supercritical Fluids, 165, Article ID: 104981.
https://doi.org/10.1016/j.supflu.2020.104981
[10]  Suryawanshi, B. and Mohanty, B. (2018) Modeling and Opti-mization of Process Parameters for Supercritical CO2 Extraction of Argemone mexicana (L.) Seed Oil. Chemical Engi-neering Communications, 206, 1087-1106.
https://doi.org/10.1080/00986445.2018.1547712
[11]  Sovová, H., Ku?era, J. and Je?, J. (1994) Rate of the Vegeta-ble Oil Extraction with Supercritical CO2—II. Extraction of Grape Oil. Chemical Engineering Science, 49, 409-414.
https://doi.org/10.1016/0009-2509(94)87012-8
[12]  Marques, M. and Meireles, M. (2001) Supercritical CO2 Ex-traction of Essential Oil and Oleoresin from Chamomile (Chamomilla recutita [L.] Rauschert). The Journal of Super-critical Fluids, 21, 245-256.
https://doi.org/10.1016/S0896-8446(01)00096-1
[13]  Astová, J., Je, J., Bártlová, M. and Sovová, H. (1996) Rate of the Vegetable Oil Extraction with Supercritical CO2—III. Extraction from Sea Buckthorn. Chemical Engineering Sci-ence, 51, 4347-4352.
https://doi.org/10.1016/0009-2509(96)00263-1
[14]  Reverchon, E. and Marrone, C. (2001) Modeling and Simula-tion of the Supercritical CO2 Extraction of Vegetable Oils. Journal of Supercritical Fluids, 19, 161-175.
https://doi.org/10.1016/S0896-8446(00)00093-0
[15]  Valle, J., Germain, J.C., Uquiche, E., et al. (2006) Micro-structural Effects on Internal Mass Transfer of Lipids in Prepressed and Flaked Vegetable Substrates. Journal of Super-critical Fluids, 37, 178-190.
https://doi.org/10.1016/j.supflu.2005.09.002
[16]  Balachandran, S., Kentish, S.E. and Mawson, R. (2006) The Ef-fects of both Preparation Method and Season on the Supercritical Extraction of Ginger. Separation & Purification Tech-nology, 48, 94-105.
https://doi.org/10.1016/j.seppur.2005.07.008
[17]  岳秀宏, 李祥宇, 刘鹏阳, 陆姝欢, 万霞. 优化尼罗红荧光染色法简便快速筛选高油脂裂殖壶菌[J]. 中国油料作物学报, 2019, 41(5): 796-863.
[18]  Harris, P.J. and Hartley, R.D. (1976) Detection of Bound Ferulic Acid in Cell Walls of the Gramineae by Ultraviolet Fluorescence Microscopy. Nature, 259, 508-510.
https://doi.org/10.1038/259508a0
[19]  Zhu, T., Li, Z., An, X., et al. (2020) Normal Struc-ture and Function of Endothecium Chloroplasts Maintained by ZmMs33-Mediated Lipid Biosynthesis in Tapetal Cells Are Critical for Anther Development in Maize. Molecular Plant, 13, 20.
https://doi.org/10.1016/j.molp.2020.09.013
[20]  Vidot, K., Devaux, M.F., Alvarado, C., et al. (2019) Phenolic Distribution in Apple Epidermal and Outer Cortex Tissue by Multispectral Deep-UV Autofluorescence Cryo-Imaging. Plant Science, 283, 51-59.
https://doi.org/10.1016/j.plantsci.2019.02.003
[21]  Lopez-Ordaz, P., Chanona-Pérez, J., Perea-Flores, M.J., et al. (2019) Effect of the Extraction by Thermosonication on Castor Oil Quality and the Microstructure of Its Residual Cake. Industrial Crops and Products, 141, Article ID: 111760.
https://doi.org/10.1016/j.indcrop.2019.111760

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133