|
威荣气田深层页岩气压裂井中微地震监测技术
|
Abstract:
井中微地震监测技术是目前诊断评价页岩气体积压裂的最有效技术手段,在页岩气田开发过程中发挥着重要作用。威荣深层页岩气田储层埋藏深度3500~3850米,目的层地温最高达140℃以上,在页岩气井水力压裂的整个过程中,耐高温且能够持续长时间稳定工作的三分量检波器成为了威荣气田页岩气井体积压裂监测的主要技术难题。通过研制自主知识产权的高温井下微地震监测仪,仪器在井下138℃条件下长时间工作状态稳定,资料品质高,满足威荣地区高温监测要求,在1925米的最远有效监测空间距离上依然能够拾取明显的微地震事件特征信号。通过现场处理解释技术能够实时提供压裂缝网的空间几何参数扩展及动态变化,用于现场评估和指导压裂施工。通过压后精细解释技术,可获取压裂缝网展布特征,进行压裂体积计算,暂堵效果分析、压裂缝与天然裂缝发育特征及关系研究、套管变形预警分析等研究工作。已在威荣气田威页3X平台、4X平台、4Y平台完成了10口井70余层段的水力压裂监测,为压裂施工效果评估、后续压裂设计调整、开发方案优化及井距调整等工作提供了技术参考。
Borehole microseismic monitoring technology is the most effective technical mean to diagnose and evaluate shale gas volume fracturing, which plays an important role in the development of shale gas field. The buried depth of WeiRong deep shale gas field is 3500~3850 m, and the ground temperature of the target layer is up to 140?C. In the whole process of hydraulic fracturing ofshale gas wells, three-component geophones that are resistant to high temperature and can workstably for a long time have become the main technical problem of volume fracturing monitoring ofshale gas wells in Weirong Gas Field. Through the development of high temperature underground microseismic monitoring instrument with independent intellectual property rights, the instrument works stably for a long time under the condition of 138?C underground, with high data quality, meeting the requirements of high temperature monitoring in WeiRong area, and can still pick up obvious characteristic signals of microseismic events at the farthest effective monitoring space distance of 1925 m. The field data processing and interpretation technology can provide real-time expansion and dynamic change of space geometric parameters of hydraulic fracture network, which can be used for field evaluation and guidance of hydraulic fracture operation. Through the fine interpretation technology after hydraulic fracturing, the distribution characteristics of fracture network can be obtained, and the fracturing volume calculation, temporary plugging effect analysis, development characteristics and relationship between hydraulic fractures and natural fractures, early warning analysis of casing deformation and other research work can be carried out. The microseismic monitoring of more than 70 layers in 10 wells has been completed in Weiye-3X platform, -4X platform and -4Y platform of WeiRong gas field, which provides technical reference for hydraulic fracturing evaluation, subsequent fracturing design adjustment, gas field development scheme optimization and well spacing adjustment.
[1] | 马新华, 李熙喆, 梁峰, 等. 威远页岩气田单井产能主控因素与开发优化技术对策[J]. 石油勘探与开发, 2020, 47(3): 555-563. |
[2] | 严永新, 张永华, 陈祥, 等. 微地震技术在裂缝监测中的应用研究[J]. 地学前缘, 2013, 20(3): 270-274. |
[3] | 刘旭礼. 井下微地震监测技术在页岩气“井工厂”压裂中的应用[J]. 石油钻探技术, 2016, 44(4): 102-107. |
[4] | 金维浚, 张衡, 张文辉, 等. 微地震监测技术及应用[J]. 地震, 2013, 33(4): 84-96. |
[5] | Milkereit, B., Adam, E. and Banerjee, D. (2002) Continuous 3D Seismic Reservoir Monitoring—A Modeling Study. CESG Geophys-ics. |
[6] | 董世泰, 高红霞. 微地震监测技术及其在油田开发中的应用[J]. 石油仪器, 2004, 18(5): 5-8. |
[7] | 李政, 常旭, 姚振兴, 等. 微地震方法的裂缝监测与储层评价[J]. 地球物理学报, 2019, 62(2): 707-719. |
[8] | 刘尧文, 廖如刚, 张远, 等. 涪陵页岩气田井地联合微地震监测气藏实例及认识[J]. 天然气工业, 2016, 36(10): 56-62. |
[9] | 巫芙蓉, 闫嫒媛, 尹陈. 页岩气微地震压裂实时监测技术——以四川盆地蜀南地区为例[J]. 天然气工业, 2016, 36(11): 46-50. |
[10] | 卞晓冰, 蒋廷学, 贾长贵, 等. 基于施工曲线的页岩气井压后评估新方法[J]. 天然气工业, 2016, 36(2): 60-65. |
[11] | Mohammad, N.A. and Miskimins, J.L. (2012) A Comparison of Hydraulic Fracture Modeling with Downhole and Surface Microseismic Data in a Stacked Fluvial Pay System. SPE Production & Operations, 27, 253-264.
https://doi.org/10.2118/134490-PA |
[12] | Neuhaus, C.W. and Miskimins, J.L. (2012) Analysis of Surface and Downhole Microseismic Monitoring Coupled with Hydraulic Fracture Modeling in the Woodford Shale. SPE Europec/EAGE Annual Conference, Copenhagen, June 2012, SPE-154804-MS. https://doi.org/10.2118/154804-MS |
[13] | 王治中, 邓金根, 赵振峰, 等. 井下微地震裂缝监测设计及压裂效果评价[J]. 大庆石油地质与开发, 2006, 25(6): 76-78. |
[14] | 刘百红, 秦绪英, 郑四连, 等. 微地震监测技术及其在油田中的应用现状[J]. 勘探地球物理进展, 2005, 28(5): 325-329. |
[15] | 杜开元, 段国斌, 徐刚, 等. 深层页岩气井压裂加砂工艺优化的微地震评价[J]. 石油地球物理勘探, 2018, 53(增刊2): 148-155. |
[16] | 武恒志, 熊亮, 葛忠伟, 等. 四川盆地威远地区页岩气优质储层精细刻画与靶窗优选[J]. 天然气工业, 2019, 39(3): 11-20. |
[17] | 熊亮. 川南威荣页岩气田五峰组-龙马溪组页岩沉积相特征及其意义[J]. 石油实验地质, 2019, 41(3): 326-332. |
[18] | 储仿东, 李彦鹏, 徐刚, 等. GeoEast-ESP微地震实时监测系统(V1.0) [J]. 石油科技论坛, 2015(B10): 8-11. |
[19] | 任朝发. 井中微地震监测质量控制与微地震事件筛选方法[J]. 油气井测试, 2019, 28(5): 44-52. |
[20] | 代丽艳, 董宏丽, 李学贵. 微地震数据去噪方法综述[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1145-1159. |
[21] | 梁北援, 沈琛, 冷传波, 等. 微地震压裂监测技术研发进展[J]. 地球物理学进展, 2015, 30(1): 401-410. |
[22] | 宋维琪. 微地震监测新技术与新方法[M]. 东营: 中国石油大学出版社, 2014. |
[23] | 宋维琪, 冯超. 微地震有效事件自动识别与定位方法[J]. 石油地球物理勘探, 2013, 48(2): 283-288. |
[24] | 杨瑞召, 李德伟, 庞海玲, 等. 页岩气压裂微地震监测中的裂缝成像方法[J]. 天然气工业, 2017, 37(5): 31-37. |
[25] | 赵超峰, 张伟, 田建涛, 等. 微地震事件解释实例[J]. 石油地球物理勘探, 2018, 53(4): 770-777. |
[26] | 刘振武, 撒利明, 巫芙蓉. 中国石油集团非常规油气微地震监测技术现状及发展方向[J]. 石油地球物理勘探, 2013, 48(5): 843-853+676+854. |
[27] | 李凡华, 董凯, 付盼, 等. 页岩气水平井大型体积压裂套损预测和控制方法[J]. 天然气工业, 2019, 39(4): 69-75. |
[28] | 曹学军, 王明贵, 康杰, 等. 四川盆地威荣区块深层页岩气水平井压裂改造工艺[J]. 天然气工业, 2019, 39(7): 81-87. |