|
一种生长型新锆石的成因探讨——以平果沉积型铝土矿为例
|
Abstract:
普遍认为锆石是在岩浆或变质作用下形成,但平果铝土矿矿石中的锆石具有部分不同于传统认识的锆石特征,在其形貌上部分锆石核、边部存在明显差异,核部具有一定磨圆,而边部晶型完整,显示典型二元结构特征;利用ICP-MS进行精确U-Pb同位素定年分析,发现锆石U-Pb年龄具有多期、多阶段特征,核部年龄主要集中在寒武纪,锆石边部年龄多表现为二叠纪;经电子探针原位微量元素测试分析,锆石核部显示岩浆锆石特征,而边部显示海相沉积作用特征。同时对研究区矿石的手标本观察及电子显微镜下观察,都未发现任何岩浆热液叠加现象。推测认为,平果铝土矿中的锆石为一种新的生长型锆石,其锆石核部为寒武系地层中的锆石是经过表生搬运而来,而其边部则是二叠纪合山组的沉积和成岩阶段经二次生长所形成。
It is generally suggested that zircon is crystallized from high-temperature magmas or formed by metamorphic processes. However, the zircons from the Pingguo bauxite ores show some characteristics different from those of typical and metamorphic zircons. The core and mantle in some zircons are obvious differences in morphology. The core has a certain degree of roundness, whereas the mantle shows a complete crystal feature, showing typical characteristics of binary structure. Using ICP-MS to carry out accurate U-Pb isotope dating analysis, it is found that the U-Pb age of zircon has the characteristics of multi-phase and multi-phase. The core age is mainly concentrated in the Cambrian, and the edge age of zircon is mainly in the Permian; the electron probe in-situ trace element analysis shows that the core of zircon shows the characteristics of magmatic zircon, while the edge shows the characteristics of marine sedimentation. At the same time, the hand samples of the ore in the study area were observed and the electron microscope under observation, no magmatic hydrothermal superposition phenomenon is found. Based on the results, it is proposed that the zircons from the Pingguo bauxite ores are a new overgrowth-type zircon, within which the core is a supergene transport of Cambrian zircon, and the mantle was formed by the secondary growth during sedimentary and diagenetic stage of the Heshanformation in Permian.
[1] | 汪相, Pupin, J.P. 法国阿根特拉花岗岩中锆石的微量元素地球化学特征及地质意义[J]. 地质论评, 1992, 38(3): 260-270. |
[2] | 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604. |
[3] | 王勤燕, 陈能松, 刘嵘. U-Th-Pb副矿物的原地原位测年微束分析方法比较与微区晶体化学研究[J]. 地质科技情报, 2005, 24(1): 7-13. |
[4] | 陈能松, 孙敏, 王勤燕, 罗彦. 原地原位定年技术工作思路探讨——中深变质岩区精细变质年代学格架的建立[J]. 地质科技情报, 2003, 22(2): 1-5. |
[5] | Keay, S., Steele, D. and Compston, W. (1999) Identifying Granite Sources by SHRIMP U-Pb Zircon Geochronology: an Application to the Lachlan Foldbelt. Contributions to Mineralogy & Petrology, 137, 323-341.
https://doi.org/10.1007/s004100050553 |
[6] | Schaltegger, Fanning, C.M., Gunther, D. (1999) Growth, Annealing and Recrystallization of Zircon and Preservation of Wonazite in High-Grade Metamorphism: Conventional and in Situ U-Pb Isotope, Cathodoluminescence and Microchemical Evidence. Contributions to Mineralogy and Petrology, 134, 186-201. https://doi.org/10.1007/s004100050478 |
[7] | Rubatto, D., et al. (2001) Zircon and Monazite Response to Prograde Metamorphism in the Reynolds Range, Central Australia. Contributions to Mineralogy and Petrology, 140, 458-468. https://doi.org/10.1007/PL00007673 |
[8] | 郑建平, 路凤香, 余淳梅, 汤华云. 汉诺坝玄武岩中麻粒岩捕虏体锆石Hf同位素、U-Pb定年和微量元素研究: 华北下地壳早期演化的记录[J]. 科学通报, 2004, 49(4): 375-383. |
[9] | 郭佩, 刘池洋, 王建强, 李长志. 碎屑锆石年代学在沉积物源研究中的应用及存在问题[J]. 沉积学报, 2017, 35(1): 46-56. |
[10] | Hermann, J., Rubatto, D. and Korsakov, A. (2001) Multiple Zircon Growth during Fast Exhumation of Diamondiferous, Deeply Subducted Continental Crust (Kokchetav Massif, Kazakhstan). Contributions to Mineralogy & Petrology, 141, 66-82. https://doi.org/10.1007/s004100000218 |
[11] | Vavra, G., Schmid, R., et al. (1999) Internal Morphology, Habit and U-Th-Pb Microanalysis of Amphibolite-to-Granulite Facies Zircons: Geochronology of the Ivrea Zone (Southern Alps). Contributions to Mineralogy & Petrology, 134, 380-404. https://doi.org/10.1007/s004100050492 |
[12] | Rosa, J.D., Jenner, G.A., et al. (2002) A Study of Inherited Zircons in Granitoid Rocks from the South Portuguese and Ossa-Morena Zones, Iberian Massif: Support for the Exotic Origin of the South Portuguese Zone. Tectonophysics, 353, 245-256. https://doi.org/10.1016/S0040-1951(02)00199-3 |
[13] | 钟玉芳, 马昌前, 佘振兵. 锆石地球化学特征及地质应用研究综述[J]. 地质科技情报, 2006, 25(1): 27-34+40. |
[14] | 陈道公, 李彬贤, 夏群科, 吴元保, 程昊. 变质岩中锆石U-Pb计时问题评述——兼论大别造山带锆石定年[J]. 岩石学报, 2001, 17(1): 129-138. |
[15] | 周剑雄, 陈振宇. 电子探针下锆石等矿物的阴极发光研究[J]. 中国地质, 2001, 28(12): 37-38. |
[16] | 朱节清, 王毅民. 矿物微区元素分布分析研究——核探针的地学应用初探[J]. 岩矿测试, 1991(4): 262. |
[17] | 彭璇, 庄玉军, 辜平阳, 时超, 何世平, 曹佰迪. 柴北缘小赛什腾山片麻状花岗岩的成因: 来自地球化学、锆石U-Pb年代学及Hf同位素约束[J]. 西北地质, 2022, 55(4): 221-239. |
[18] | 徐盛林, 陈宣华, 马飞宙, 邵兆刚, 丁伟翠, 韩乐乐, 王叶. 西准噶尔拉巴岩体的成因——来自岩石学、年代学和地球化学的证据[J]. 地球学报, 2022, 43(6): 875-894. |
[19] | 刘欣, 伍月, 金珊合. 皖浙赣交界莲花山岩体U-Pb锆石年龄及其地质意义[J]. 地质与资源, 2021, 30(6): 666-674+682. |
[20] | 刘祥, 詹琼窑, 朱弟成, 王青, 谢锦程, 张亮亮. 松潘-甘孜褶皱带南部上三叠统物源及构造抬升: 碎屑锆石年代学和Hf同位素证据[J]. 岩石学报, 2021, 37(11): 3513-3538. |
[21] | 王安琪, 杨德彬, 许文良, 王清海, 梁景辉. 安徽滁州和管店早白垩世高镁埃达克质侵入岩的成因: 锆石U-Pb年代学和Sr-Nd-Hf同位素的制约[J]. 岩石学报, 2021, 37(11): 3559-3574. |
[22] | 樊婷婷, 车飞翔, 柳益群, 杨皓凯, 周梦影. 准东原中元古代变质碎屑岩锆石U-Pb年代学及其意义[J]. 西北大学学报(自然科学版), 2021, 51(5): 901-910. |
[23] | 郭涛, 胡作维, 李云, 史格, 詹旗胜, 李韶昱, 管晋红. 四川北川地区中泥盆统养马坝组碎屑锆石U-Pb年代学特征及其构造意义[J]. 地球科学与环境学报, 2021, 43(5): 868-886. |
[24] | 张海迪, 陈博, 吕鹏瑞, 罗彦军, 郭伟立, 康磊, 刘生荣, 任广利. 东天山黄山西角闪辉长岩成因及其地质意义: 来自锆石U-Pb年代学及地球化学的证据[J]. 西北地质, 2021, 54(3): 51-65. |
[25] | 王勇生, 马威威, 杨隽豪, 白桥. 大别造山带晚古生代再循环锆石: 合肥盆地新生代基性岩锆石LA-ICP-MS U-Pb定年和Hf同位素证据[J]. 地球科学进展, 2023, 1-16. |
[26] | 罗涛, 胡兆初. 激光剥蚀电感耦合等离子体质谱副矿物U-Th-Pb定年新进展[J]. 地球科学, 2022, 47(11): 4122-4144. |
[27] | 许晨, 陈衍景, 周振菊. 小秦岭地区古元古代晚期花岗岩的LA-ICP-MS U-Pb年龄、地球化学特征及其构造意义[J]. 地质论评, 2022, 68(6): 2053-2073. |
[28] | 彭游博, 刘文彬, 姚玉健, 赵军, 谢忠, 骆念岗. 辽宁阜新北部地区早侏罗世花岗岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及铷矿化[J]. 地质论评, 2022, 68(6): 2089-2102. |
[29] | 张红雨, 杨立明, 苏犁, 宋述光, 王大川. LA-ICP-MS独居石的U(Th)-Pb年龄精确测定方法及地质意义探究[J]. 现代地质, 2022, 1-33. |
[30] | 吴年冬, 王忠伟, 倪战旭, 彭展. 桂东大桂山地区寒武系砂岩地球化学特征及沉积构造环境分析[J]. 桂林理工大学学报, 2020, 40(4): 655-664. |
[31] | 潘其云. 广西平果铝土矿田发现史[J]. 广西地质, 1994(2): 89-92. |
[32] | 杜晓东, 邹和平, 苏章歆, 劳妙姬, 陈诗艾, 丁汝鑫. 广西大瑶山-大明山地区寒武纪砂岩-泥岩的地球化学特征及沉积-构造环境分析[J]. 中国地质, 2013, 40(4): 1112-1128. |
[33] | 戴塔根, 龙永珍, 张起钻, 等. 桂西某些铝土矿床稀土元素地球化学研究[J]. 地质与勘探, 2003, 39(4): 1-5. |
[34] | 覃小锋, 王宗起, 张英利, 潘罗忠, 胡贵昂, 周府生. 桂西南早中生代酸性火山岩年代学和地球化学: 对钦-杭结合带西南段构造演化的约束[J]. 岩石学报, 2011, 27(3): 794-808. |
[35] | 万兵, 周文煊, 杨承恪. 广西铝土矿的物源探讨[J]. 地质与勘探, 1981(1): 25-32. |
[36] | Liu, X.F., Wang, Q.F., Zhang, Q.Z., et al. (2017) Genesis of the Permian Karstic Pingguo Bauxite Deposit, Western Guangxi, China. Mineralium Deposita, 52, 1031-1048. https://doi.org/10.1007/s00126-017-0723-y |
[37] | Cao, J.Y., Wu, Q.H., et al. (2017) Metallogenic Mechanism of Pingguo Bauxite Deposit, Western Guangxi, China: Constraints from REE Geochemistry and Multi-Fractal Characteristics of Major Elements in Bauxite Ore. Journal of Central South University, 24, 1627-1636. https://doi.org/10.1007/s11771-017-3568-8 |
[38] | 李献华, 梁细荣, 韦刚健, 刘颖. 锆石Hf同位素组成的LAM-MC-ICPMS精确测定[J]. 地球化学, 2003, 32(1): 86-90. |
[39] | 梁细荣, 李献华, 刘永康, 朱炳泉, 张海祥. 激光探针等离子体质谱法(LAM-ICPMS)用于年轻锆石U-Pb定年[J]. 地球化学, 2000, 29(1): 1-5. |
[40] | 李任伟, 万渝生, 陈振宇, 周剑雄, 许荣华, 李忠, 江茂生. 根据碎屑锆石SHRIMP U-Pb测年恢复早侏罗世大别造山带源区特征[J]. 中国科学(D辑: 地球科学), 2004, 34(4): 320-328. |
[41] | 郑永飞, 龚冰, 赵子福, 陈福坤. 大别-苏鲁造山带超高压变质岩原岩性质: 锆石氧同位素和U-Pb年龄证据[J]. 科学通报, 2003, 48(2): 110-119. |