全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

石墨烯在含能材料中应用的研究进展
Research Progress in the Application of Graphene in Energetic Materials

DOI: 10.12677/MS.2022.1212149, PP. 1336-1350

Keywords: 石墨烯,含能材料,应用,研究进展
Graphene
, Energetic Materials, Application, Research Progress

Full-Text   Cite this paper   Add to My Lib

Abstract:

石墨烯由于其独特的结构和优异的导电性、导热性以及热催化性能等,受到世界各国科技工作者的重视,并被广泛研究。尤其是在含能材料领域,石墨烯有着广泛的应用前景。为了更好地了解石墨烯在含能材料中应用的研究现状,本文概述了石墨烯材料的结构与性能,重点阐述了石墨烯在高能炸药、火箭推进剂等含能材料方向的应用,并对其在含能材料领域的发展做了总结与展望。
Graphene has attracted the attention of scientists all over the world and has been widely studied due to its unique structure, excellent conductivity, thermal conductivity and thermal catalytic per-formance. Especially in the field of energetic materials, graphene has a broad application prospect. In order to better understand the research status of the application of graphene in energetic mate-rials, this paper summarizes the structure and properties of graphene materials, focuses on the ap-plication of graphene in high-energy explosives, rocket propellants and other energetic materials, and summarizes and prospects its development in the field of energetic materials.

References

[1]  Novoselov, K.S., Geim, A.K., et al. (2004) Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669.
https://doi.org/10.1126/science.1102896
[2]  Ren, S., Rong, P. and Yu, Q. (2018) Preparations, Properties and Applications of Graphene in Functional Devices: A Concise Review. Ceramics International, 44, 11940-11955.
https://doi.org/10.1016/j.ceramint.2018.04.089
[3]  Sattar, T. (2019) Current Review on Synthesis, Composites and Multifunctional Properties of Graphene. Topics in Current Chemistry, 377, Article No. 10.
https://doi.org/10.1007/s41061-019-0235-6
[4]  Guo, Z.Q., Wang, Y., Zhang, Y.Z., et al. (2022) Energetic Host-Guest Inclusion Compounds: An Effective Design Paradigm for High-Energy Materials. Crystengcomm, 24, 3667-3674.
https://doi.org/10.1039/D2CE00171C
[5]  程晨, 杜仕国. 新型燃烧型含能材料研究进展[J]. 兵器装备工程学报, 2019, 40(4): 109-114.
[6]  Wang, F.P., Du, G.Y., Liu, X.C., et al. (2022) Molecular Dynamics Ap-plication of Cocrystal Energetic Materials: A Review. Nanotechnology Reviews, 11, 2141-2153.
https://doi.org/10.1515/ntrev-2022-0124
[7]  Chaturvedi, S. and Dave, P.N. (2019) Solid Propellants: AP/HTPB Composite Propellants. Arabian Journal of Chemistry, 12, 2061-2068.
https://doi.org/10.1016/j.arabjc.2014.12.033
[8]  任荣, 管洪宇, 熊需海, 等. 石墨烯改性含能材料的制备方法及性能研究进展[J]. 固体火箭技术, 2021, 44(6): 718-725.
[9]  袁申, 李兆乾, 段晓惠, 等. NGO/NC复合含能材料的制备及热分解性能[J]. 含能材料, 2017, 25(3): 203-208.
[10]  Lan, Y.F., Li, X.Y., Li, G.P., et al. (2015) Sol-Gel Method to Prepare Graphene/Fe2O3 Aerogel and Its Catalytic Application for the Thermal Decomposition of Ammonium Perchlorate. Journal of Nanoparticle Research, 17, Article No. 395.
https://doi.org/10.1007/s11051-015-3200-5
[11]  Qu, Y.Y. and Babailov, S.P. (2018) Azo-Linked High-Nitrogen Energetic Materials. Journal of Materials Chemistry A, 6, 1915-1940.
https://doi.org/10.1039/C7TA09593G
[12]  Liang, A.Y., Jiang, X.S., Hong, X., et al. (2018) Recent Developments Concerning the Dispersion Methods and Mechanisms of Graphene. Coatings, 8, Article 33.
https://doi.org/10.3390/coatings8010033
[13]  王剑桥, 雷卫宁, 薛子明, 等. 石墨烯增强金属基复合材料的制备及应用研究进展[J]. 材料工程, 2018, 46(12): 18-27.
[14]  Kim, B.K. (2012) Graphene and Graphene/Polymer Nanocomposites. Express Polymer Letters, 6, 772.
https://doi.org/10.3144/expresspolymlett.2012.82
[15]  Tiwari, S.K., Sahoo, S., Wang, N. and Huczko, A. (2020) Graphene Research and Their Outputs: Status and Prospect. Journal of Science: Advanced Materials and Devices, 5, 10-29.
https://doi.org/10.1016/j.jsamd.2020.01.006
[16]  叶宝云. 石墨烯材料改性含能复合物的构筑及应用基础研究[D]: [博士学位论文]. 太原: 中北大学, 2018.
[17]  曹宇臣, 郭鸣明. 石墨烯材料及其应用[J]. 石油化工, 2016, 45(10): 1149-1159.
[18]  Mattevi, C., Kim, H. and Chhowalla, M. (2011) A Review of Chemical Vapour Deposi-tion of Graphene on Copper. Journal of Materials Chemistry, 21, 3324-3334.
https://doi.org/10.1039/C0JM02126A
[19]  Kim, K.S., Zhao, Y., Jang, H., et al. (2009) Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes. Nature, 457, 706-710.
https://doi.org/10.1038/nature07719
[20]  白树林, 赵云红. 石墨烯热学性能及表征技术[J]. 力学进展, 2014, 44(1): 236-259.
[21]  燕绍九, 陈翔, 洪起虎, 等. 石墨烯增强铝基纳米复合材料研究进展[J]. 航空材料学报, 2016, 36(3): 57-70.
[22]  苏方远, 唐睿, 贺艳兵, 等. 用于锂离子电池的石墨烯导电剂: 缘起、现状及展望[J]. 科学通报, 2017, 62(32): 3743-3756.
[23]  刘腾宇, 张熊, 安亚斌, 等. 石墨烯在锂离子电容器中的应用研究进展[J]. 储能科学与技术, 2020, 9(4): 1030-1043.
[24]  宋厚甫, 康飞宇. 石墨烯导热研究进展[J]. 物理化学学报, 2022, 38(1): 87-102.
[25]  孙明威, 李勇, 高广言, 等. 浅谈石墨烯材料在LED路灯模组中的应用及该模组的设计[J]. 电子制作, 2018(8): 21-22.
[26]  Razaq, A., Bibi, F., Zheng, X.X., et al. (2022) Review on Graphene-, Graphene Ox-ide-, Reduced Graphene Oxide-Based Flexible Composites: From Fabrication to Applications. Materials, 15, Article No. 1012.
https://doi.org/10.3390/ma15031012
[27]  黄国家, 陈志刚, 李茂东, 等. 石墨烯和氧化石墨烯的表面功能化改性[J]. 化学学报, 2016, 74(10): 789-799.
[28]  贾辉, 孔庆强, 李文斌, 等. 石墨烯及其衍生物在含能材料中的应用研究进展[J]. 固体火箭技术, 2022, 45(1): 26-35.
[29]  朱宏文, 段正康, 张蕾, 等. 氧化石墨烯的制备及结构研究进展[J]. 材料科学与工艺, 2017, 25(6): 82-88.
[30]  Olabi, A.G., Abdelkareem, M.A., Wilberforce, T., et al. (2021) Application of Graphene in Energy Storage Device—A Review. Renewable & Sustainable Energy Reviews, 135, Article ID: 110026.
https://doi.org/10.1016/j.rser.2020.110026
[31]  杨文彬, 张丽, 刘菁伟, 等. 石墨烯复合材料的制备及应用研究进展[J]. 材料工程, 2015, 43(3): 91-97.
[32]  郭建强, 李炯利, 梁佳丰, 等. 氧化石墨烯的化学还原方法与机理研究进展[J]. 材料工程, 2020, 48(7): 24-35.
[33]  张笑娟, 魏琦峰, 任秀莲. 氧化石墨烯的制备方法、结构、性质及应用研究进展[J]. 应用化工, 2022, 51(7): 2106-2112.
[34]  王华煜, 吴靖丽, 许亚北, 等. 氧化石墨烯对TKX-50含能材料热性能的影响[J]. 中北大学学报, 2020, 41(3): 256-260.
[35]  Costa, M.C.F., Marangoni, V.S., Ng, P.R., et al. (2021) Accelerated Synthesis of Graphene Oxide from Graphene. Nanomaterials, 11, Article No. 551.
https://doi.org/10.3390/nano11020551
[36]  Wang, Y., Li, S.S., Yang, H.Y., et al. (2020) Progress in the Function-al Modification of Graphene/Graphene Oxide: A Review. RSC Advances, 10, 15328-15345.
https://doi.org/10.1039/D0RA01068E
[37]  Zhang, W.W., Luo, Q.P., Duan, X.H., et al. (2014) Nitrated Graphene Oxide and Its Catalytic Activity in Thermal Decomposition of Ammonium Perchlorate. Materials Research Bulletin, 50, 73-78.
https://doi.org/10.1016/j.materresbull.2013.10.023
[38]  Yuan, S., Li, Z.Q., Luo, Q.P., et al. (2020) Preparation and Thermal Decomposition Properties of Nitrated Graphene Oxide (NGO)/RDX Nano-Energetic Composites. Journal of Thermal Analysis and Calorimetry, 139, 1671-1679.
https://doi.org/10.1007/s10973-019-08613-x
[39]  管发扬, 于兰, 任慧, 等. 硝化石墨烯制备及对高氯酸铵热分解的催化作用[J]. 兵工学报, 2020, 41(7): 1324-1329.
[40]  袁申. 含硝化石墨烯(NGO)的纳米复合含能材料制备及性能研究[D]: [硕士学位论文]. 绵阳: 西南科技大学, 2014.
[41]  张文文. 硝化石墨烯的制备及其对AP的催化性能研究[D]: [硕士学位论文]. 绵阳: 西南科技大学, 2014.
[42]  张明, 赵凤起, 杨燕京, 等. 石墨烯基材料对含能材料性能影响的研究进展[J]. 含能材料, 2018, 12(9): 1074-1082.
[43]  吕洋, 毛璟博, 王帆, 等. 石墨烯材料在催化剂中应用功能综述[J]. 工业催化, 2021, 29(5): 1-9.
[44]  Fu, X.L., Zhu, Y.H., Li, J.Z., et al. (2021) Prepara-tion, Characterization and Application of Nano-Graphene-Based Energetic Materials. Nanomaterials, 11, Article No. 17.
https://doi.org/10.3390/nano11092374
[45]  闫宁, 冯昊, 秦利军, 等. 一种采用原子层沉积技术制备石墨烯纳米复合含能材料的方法[P]. 中国, 201610228290. 2016-04-13.
[46]  扬叶, 熊文慧, 张文超, 等. 一种利用功能化石墨烯制备纳米含能材料及其方法[P]. 中国, 201610743386. 2016-08-26.
[47]  李渝, 胡志波, 文兴青, 等. 石墨烯材料制备技术与创新及发展趋势[J]. 中国非金属矿工业导刊, 2021(2): 19-23.
[48]  Wang, J.F., Chen, S.S., Jin, S.H., et al. (2018) The Primary Decomposition Product of TKX-50 under Adiabatic Condition and Its Thermal Decom-position. Journal of Thermal Analysis and Calorimetry, 134, 2049-2055.
https://doi.org/10.1007/s10973-018-7820-8
[49]  王华煜, 曹雄, 吴靖丽, 等. TKX-50/GO复合含能材料的制备及热分解特性[J]. 火炸药学报, 2020, 43(6): 631-635.
[50]  张建侃, 赵凤起, 徐司雨, 等. 两种Fe2O3@rGO纳米复合物的制备及其对TKX-50热分解的影响[J]. 含能材料, 2017, 25(7): 564-569.
[51]  Duan, B.H., Shu, Y.J., Liu, N., et al. (2018) Direct Insight into the Formation Driving Force, Sensitivity and Detonation Performance of the Ob-served CL-20-Based Energetic Cocrystals. CrystEngComm, 20, 5790-5800.
https://doi.org/10.1039/C8CE01132J
[52]  Zhang, T., Guo, Y., Li, J.C., et al. (2018) High Catalytic Activity of Ni-trogen-Doped Graphene on the Thermal Decomposition of CL-20. Propellants, Explosives, Pyrotechnics, 43, 1263-1269.
https://doi.org/10.1002/prep.201800014
[53]  Li, Y.B., Pan, L.P., Yang, Z.J., et al. (2017) The Effect of Wax Coat-ing, Aluminum and Ammonium Perchlorate on Impact Sensitivity of HMX. Defence Technology, 13, 422-427.
https://doi.org/10.1016/j.dt.2017.05.022
[54]  Li, R., Wang, J., Shen, J.P., et al. (2013) Preparation and Characteri-zation of Insensitive HMX/Graphene Oxide Composites. Propellants, Explosives, Pyrotechnics, 38, 798-804.
https://doi.org/10.1002/prep.201200199
[55]  Simkova, L. and Ludvik, J. (2020) Electrochemically Triggered Deg-radation of Energetic Material FOX-7 (2,2- dinitroethene-1,1-diamine)—Structural, Redox, and Spectrometric Character-ization in Solution. Journal of Physical Organic Chemistry, 33, e4046.
https://doi.org/10.1002/poc.4046
[56]  Su, Y., Sun, Y.Z. and Zhao, J.J. (2019) Interaction Mechanisms of Insensitive Explosive FOX-7 and Graphene Oxides from Ab Initio Calculations. Nanomaterials, 9, Article No. 10.
https://doi.org/10.3390/nano9091290
[57]  兰元飞, 李霄羽, 罗运军. 石墨烯在含能材料中的应用研究进展[J]. 火炸药学报, 2015, 38(1): 1-7.
[58]  Wang, F., Wang, H.Y. and Mao, J. (2019) Aligned-Graphene Composites: A Review. Journal of Materials Science, 54, 36-61.
https://doi.org/10.1007/s10853-018-2849-4
[59]  Lee, S.J., Yoon, S.J. and Jeon, I.-Y. (2022) Graphene/Polymer Nanocomposites: Preparation, Mechanical Properties, and Application. Polymers, 14, Article No. 4733.
https://doi.org/10.3390/polym14214733
[60]  徐尧, 王虹, 李建, 等. 中子衍射法测量TATB基PBX单轴压缩的内应力研究[J]. 含能材料, 2017, 25(10): 860-865.
[61]  Lin, C., He, G., Liu, J., et al. (2017) Enhanced Non-Linear Viscoelastic Properties of Polymer Bonded Explosives Based on Graphene and a Neutral Polymeric Bonding Agent. Central European Journal of Energetic Materials, 14, 788-805.
https://doi.org/10.22211/cejem/78753
[62]  Liu, Y.H., Zheng, J., Zhang, X., et al. (2021) Recent Advances on Graphene Microstructure Engineering for Propel-lant-Related Applications. Journal of Applied Polymer Science, 138, Article No. 50474.
https://doi.org/10.1002/app.50474
[63]  成健, 沈心怡, 王睿, 等. 含能功能化氧化石墨烯的制备、热分解行为及其对AP热分解的催化作用[J]. 火炸药学报, 2020, 43(2): 180-187.
[64]  Ao, W., Liu, P.J., Liu, H., et al. (2020) Tuning the Agglomeration and Combustion Characteristics of Aluminized Propellants via a New Functionalized Fluoro-polymer. Chemical Engineering Journal, 382, Article ID: 122987.
https://doi.org/10.1016/j.cej.2019.122987
[65]  Zhu, B.Z., Zhang, S.Y., Sun, Y.L., et al. (2021) Fluorinated Gra-phene Improving Thermal Reaction and Combustion Characteristics of Nano-Aluminum Powder. Thermochimica Acta, 705, Article ID: 179038.
https://doi.org/10.1016/j.tca.2021.179038

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133