全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于眼球特征提取的甲状腺眼病预测方法研究
Research on Prediction Method of Thyroid-Associated Ophthalmopathy Based on Eyeball Feature Extraction

DOI: 10.12677/SEA.2022.116132, PP. 1288-1296

Keywords: 甲状腺眼病,深度学习,CT影像,眼球突出度,影像组学特征
Thyroid-Associated Ophthalmopathy
, Deep Learning, CT Image, Exophthalmos Proptosis, Radiomic Features

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:眼球突出度的计算对甲状腺相关性眼病(Thyroid-Associated Ophthalmopathy, TAO)诊断非常有价值,但受限于传统眼球突出度测量工具的缺陷和眼科医生主观上的诊断差异,从CT影像中提取的多种特征对TAO进行预测可以避免上述误差。方法:使用深度学习方法建立眼球分割模型,从CT影像中分割出眼球,设计算法进行自动化测量眼球突出度,对眼球分割结果进行影像组学特征提取,利用不同特征组合对TAO进行预测,并观察比较结果差异。结果:眼球分割模型在测试集上的分割Dice系数为0.935,使用自动算法测量的眼球突出度与提取的眼球影像组学特征结合共同预测TAO的准确率优于单独使用眼球突出度或单独使用眼球组学特征对TAO进行预测的准确率。结论:自动化眼球突出度测量与影像组学特征结合高于单项指标预测效能,基于眼球影像特征提取对预测TAO的结果证明CT影像上不能被眼科医生直接发现的影像组学特征信息对预测结果有正面作用。
Objective: The calculation of proptosis is very valuable for the diagnosis of Thyroid-Associated Ophthalmopathy (TAO), but limited by the insufficiency of traditional tools for measuring exophthalmos and the subjective diagnostic differences of ophthalmologists. The various features extracted from CT images in this paper are useful for TAO to make predictions. Methods: A deep learning method was used to establish an eyeball segmentation model, and the eyeballs were segmented from CT images. An algorithm was designed to automatically measure the exophthalmos, and extract the features of eyeball segmentation results. Different feature combinations were used to predict TAO, and then observed and compared the difference in results. Results: The segmentation dice of the eye segmentation model on the test set was 0.935. The combination of the exophthalmos measured by the automatic algorithm and the extracted radiomic features together predicted the accuracy of TAO better than the exophthalmos or the radiomic features alone. Conclusion: The combination of automated proptosis measurement and radiomic features is higher than the prediction performance of a single index, and the prediction of TAO based on feature extraction proves that the radiomic features information on CT images that cannot be directly discovered by ophthalmologists has a positive effect on the prediction results.

References

[1]  Bahn, R.S. (2010) Graves’ Ophthalmopathy. New England Journal of Medicine, 362, 726-738.
https://doi.org/10.1056/NEJMra0905750
[2]  Smith, T.J. and Hegedüs, L. (2016) Graves’ Disease. New England Journal of Medicine, 375, 1552-1565.
https://doi.org/10.1056/NEJMra1510030
[3]  Nkenke, E., Maier, T., Benz, M., et al. (2004) Hertel Exophthalmometry versus Computed Tomography and Optical 3D Imaging for the Determination of the Globe Position in Zygomatic Fractures. International Journal of Oral & Maxillofacial Surgery, 33, 125-133.
https://doi.org/10.1054/ijom.2002.0481
[4]  徐燕琳. Graves眼病患者用Hertel突眼计测量的少见并发症[J]. 国外医学?内分泌学分册, 1990(1): 46.
[5]  刘大力, 段亚东, 尹嘉莉, 赵维庆. 多功能眼科测量尺的设计与应用[J]. 眼科研究, 1998(1): 69-70.
[6]  邹义轩. 基于深度学习的甲状腺眼病图像的分割与检测[D]: [硕士学位论文]. 武汉: 湖北工业大学, 2020.
[7]  Shen, D., Wu, G. and Suk, H.I. (2017) Deep Learning in Medical Image Analysis. Annual Review of Biomedical Engineering, 19, 221-248.
https://doi.org/10.1146/annurev-bioeng-071516-044442
[8]  Ronneberger, O., Fischer, P. and Brox, T. (2015) U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab, N., Hornegger, J., Wells, W. and Frangi, A., Eds., Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Springer, Cham, 234-241.
https://doi.org/10.1007/978-3-319-24574-4_28
[9]  冯颖, 邹超洋, 杜娟, S?如凯迦, 李智军. 一种基于连通域分割的棋盘格图像快速特征匹配算法[P]. 中国专利, CN201410267230.4. 2014-10-08.
[10]  王丹丹, 秦芩, 李芮, 童明辉. 甲状腺相关性眼病影像学研究进展[J]. 中国医学影像技术, 2020, 36(11): 1746-1749.
[11]  Kumar, V., Gu, Y., et al. (2012) Radiomics: The Process and the Challenges. Magnetic Resonance Imaging, 30, 1234-1248.
https://doi.org/10.1016/j.mri.2012.06.010
[12]  Van Griethuysen, J.J.M,. Fedorov, A., Parmar, C., et al. (2017) Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Research, 77, e104-e107.
https://doi.org/10.1158/0008-5472.CAN-17-0339
[13]  Guo, H. and Gelfand, S.B. (1992) Classification Trees with Neural Network Feature Extraction. IEEE Transactions on Neural Networks, 3, 923-933.
https://doi.org/10.1109/72.165594
[14]  Breiman, L. (2001) Random Forests. Machine Learning, 45, 5-32.
https://doi.org/10.1023/A:1010933404324
[15]  Freund, Y. and Schapire, R.E. (1997) A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. Journal of Computer and System Sciences, 55, 119-139.
https://doi.org/10.1006/jcss.1997.1504
[16]  Tolstikhin, I.O., Houlsby, N., Kolesnikov, A., et al. (2021) Mlp-Mixer: An All-Mlp Architecture for Vision. Advances in Neural Information Processing Systems, 34, 24261-24272.
[17]  Song, X., Liu, Z., Li, L., et al. (2021) Artificial Intelligence CT Screening Model for Thyroid-Associated Ophthalmopathy and Tests under Clinical Conditions. International Journal of Computer Assisted Radiology and Surgery, 16, 323-330.
https://doi.org/10.1007/s11548-020-02281-1
[18]  魏楠, 孙丰源, 赵红. 眼球突出度的CT测量及其临床意义[J]. 中国实用眼科杂志, 2006, 24(3): 320-322.
[19]  张明, 鱼博浪, 王泽忠, 王世捷, 王璐. 正常国人眼球突出度的CT测量及临床意义[J]. 西安医科大学学报(中文版), 1999, 20(3): 364-366.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133