全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于自适应卷积的视差细化网络
Parallax Refinement Network Based on Adaptive Convolution

DOI: 10.12677/OE.2022.124017, PP. 147-158

Keywords: 机器视觉,立体匹配,双目视觉,自适应卷积
Machine Vision
, Stereo Matching, Binocular Vision, Adaptive Convolution

Full-Text   Cite this paper   Add to My Lib

Abstract:

为提高视差细化的精度,本文提出一种基于自适应卷积的视差细化与采样方法。利用细化假设为视差细化引入其它可用信息,在不同阶段附加不同的信息来增强细化假设。基于自适应传播方法构建局部代价卷,并将聚合操作从空间域转换至视差域,以缓解使用大卷积窗口带来的边界模糊问题,增强在无纹理或弱纹理区域的聚合效果。同时,使用自适应卷积从相似视差平面上更新视差,进而提高视差的精度。对于上采样过程,利用视差自适应采样克服双线性插值导致的精度下降问题。在SceneFlow和KITTI2015数据集上,对算法进行验证,实验结果表明,相比原始方法,本文算法在精度方面有了明显提升,特别是在KITTI2015数据集上,端点误差(EPE)和3像素错误率指标分别提升9.7%和12.5%。
To improve the accuracy of disparity refinement, this paper proposes a disparity refinement and sampling method based on adaptive convolution. The refine hypothesis is used to introduce other available information for disparity refinement, and different information is attached at different stages to augment the refine hypothesis. Based on the adaptive propagation method, the local cost volume is constructed and the aggregation operation is converted from the spatial domain to the disparity domain to alleviate the boundary blur problem caused by using large convolution windows and augmented the aggregation effect in texture-free or weakly textured areas. At the same time, adaptive convolution is used to update the disparity from similar disparity planes, which in turn improves the accuracy of disparity. For the upsampling process, disparity adaptive sampling is used to overcome the degradation of accuracy caused by bilinear interpolation. The algorithm is validated on the SceneFlow and KITTI2015 datasets, and the experimental results show that the algorithm in this paper has significantly improved in terms of accuracy compared with the original method, especially on the KITTI2015 dataset, the Endpoint Error (EPE) and 3-pixel error rate indicators have increased by 9.7% and 12.5%, respectively.

References

[1]  Scharstein, D. and Szeliski, R. (2002) A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algo-rithms. International Journal of Computer Vision, 47, 7-42.
https://doi.org/10.1023/A:1014573219977
[2]  Poggi, M., Tosi, F., Batsos, K., et al. (2021) On the Synergies between Machine Learning and Binocular Stereo for Depth Es-timation from Images: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 5314-5334.
https://doi.org/10.1109/TPAMI.2021.3070917
[3]  Laga, H., Jospin, L.V., Boussaid, F., et al. (2020) A Survey on Deep Learning Techniques for Stereo-Based Depth Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 1738-1764.
[4]  Yang, G., Zhao, H., Shi, J., et al. (2018) SegStereo: Exploiting Semantic Information for Disparity Estimation. Proceedings of the European Conference on Computer Vision (ECCV), Munich, 8-14 September 2018, 636-651.
https://doi.org/10.1007/978-3-030-01234-2_39
[5]  Song, X., Zhao, X., Hu, H., et al. (2018) EdgeStereo: A Context Integrated Residual Pyramid Network for Stereo Matching. In: Asian Conference on Computer Vision, Springer, Cham, 20-35.
https://doi.org/10.1007/978-3-030-20873-8_2
[6]  Song, X., Zhao, X., Fang, L., et al. (2020) EdgeStereo: An Effective Multi-Task Learning Network for Stereo Matching and Edge Detection. International Journal of Computer Vision, 128, 910-930.
https://doi.org/10.1007/s11263-019-01287-w
[7]  Khamis, S., Fanello, S., Rhemann, C., et al. (2018) StereoNet: Guided Hierarchical Refinement for Real-Time Edge-Aware Depth Prediction. Proceedings of the European Conference on Computer Vision (ECCV), Munich, 8-14 September 2018, 573-590.
https://doi.org/10.1007/978-3-030-01267-0_35
[8]  Chabra, R., Straub, J., Sweeney, C., et al. (2019) StereoDRNet: Dilated Residual StereoNet. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, 15-20 June 2019, 11786-11795.
https://doi.org/10.1109/CVPR.2019.01206
[9]  Wang, L., Guo, Y., Wang, Y., et al. (2020) Parallax Attention for Unsupervised Stereo Correspondence Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 2108-2125.
[10]  Kendall, A., Martirosyan, H., Dasgupta, S., et al. (2017) End-to-End Learning of Geometry and Context for Deep Stereo Regression. Proceedings of the IEEE International Conference on Computer Vision, Venice, 22-29 October 2017, 66-75.
https://doi.org/10.1109/ICCV.2017.17
[11]  Chang, J.R. and Chen, Y.S. (2018) Pyramid Stereo Matching Network. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, 18-22 June 2018, 5410-5418.
https://doi.org/10.1109/CVPR.2018.00567
[12]  Mayer, N., Ilg, E., Hausser, P., et al. (2016) A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 27-30 June 2016, 4040-4048.
https://doi.org/10.1109/CVPR.2016.438
[13]  Jie, Z., Wang, P., Ling, Y., et al. (2018) Left-Right Comparative Recurrent Model for Stereo Matching. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, 18-22 June 2018, 3838-3846.
https://doi.org/10.1109/CVPR.2018.00404
[14]  Xu, H. and Zhang, J. (2020) AANet: Adaptive Aggregation Network for Efficient Stereo Matching. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, 14-19 June 2020, 1959-1968.
https://doi.org/10.1109/CVPR42600.2020.00203
[15]  Wang, F., Galliani, S., Vogel, C., et al. (2021) PatchmatchNet: Learned Multi-View Patchmatch Stereo. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, 20-25 June 2021, 14194-14203.
https://doi.org/10.1109/CVPR46437.2021.01397
[16]  Tankovich, V., Hane, C., Zhang, Y., et al. (2021) HITNet: Hierarchical Iterative Tile Refinement Network for Real-Time Stereo Matching. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, 20-25 June 2021, 14362-14372.
https://doi.org/10.1109/CVPR46437.2021.01413
[17]  Dai, J., Qi, H., Xiong, Y., et al. (2017) Deformable Convolutional Networks. Proceedings of the IEEE International Conference on Computer Vision, Venice, 22-29 October 2017, 764-773.
https://doi.org/10.1109/ICCV.2017.89
[18]  Zhu, X., Hu, H., Lin, S., et al. (2019) Deformable ConvNets V2: More Deformable, Better Results. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, 16-17 June 2019, 9308-9316.
https://doi.org/10.1109/CVPR.2019.00953
[19]  Min, D., Lu, J. and Do, M.N. (2011) A Revisit to Cost Aggregation in Stereo Matching: How Far Can We Reduce Its Computational Redundancy? 2011 IEEE International Conference on Computer Vision, Barcelona, 6-13 November 2011, 1567-1574.
https://doi.org/10.1109/ICCV.2011.6126416
[20]  Ronneberger, O., Fischer, P. and Brox, T. (2015) U-Net: Convolutional Networks for Biomedical Image Segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, Cham, 234-241.
https://doi.org/10.1007/978-3-319-24574-4_28
[21]  Long, J., Shelhamer, E. and Darrell, T. (2015) Fully Convolutional Networks for Semantic Segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, 7-12 June 2015, 3431-3440.
https://doi.org/10.1109/CVPR.2015.7298965
[22]  He, K., Zhang, X., Ren, S., et al. (2016) Deep Residual Learning for Image Recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 27-30 June 2016, 770-778.
https://doi.org/10.1109/CVPR.2016.90
[23]  Menze, M. and Geiger, A. (2015) Object Scene Flow for Autonomous Vehicles. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, 7-12 June 2015, 3061-3070.
https://doi.org/10.1109/CVPR.2015.7298925

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133