|
基于生命周期评价的八字嘴航电枢纽工程节能减碳效益评估
|
Abstract:
航电枢纽在促进区域经济发展的同时,在应对气候变化方面亦发挥了重要作用。以江西省八字嘴航电枢纽工程为例,基于生命周期评价法(LCA)对航电枢纽碳足迹进行调查评估,并构建了节能减碳效益评价模型,结果发现:1) 八字嘴航电枢纽工程生命周期碳足迹为2.3 × 106 t CO2eq,其建设阶段和运行阶段的碳足迹分别为0.49 × 106 t CO2eq和1.79 × 106 t CO2eq,分别占总碳足迹的18%和82%;2) 八字嘴航电枢纽工程运营期内向外输送的电量达128.40 × 108 kWh,总减碳量达4.66 × 106 t CO2eq。该研究表明以该航电枢纽工程为代表的江西航电工程开发价值大、节能减碳效果显著,可为准确核算航电枢纽项目的碳排放及其环境效益提供精细指导,同时对于探索双碳目标的实现路径具有一定的支撑作用。
Navigation-power junction project not only promotes regional economic development, but also plays an effective role to cope with climate change. This study takes the Bazizui navigation-power junction project in Jiangxi province as an example, the carbon footprint of navigation and power hub is investigated and evaluated based on life cycle assessment, and builds an evaluation model of energy saving and carbon reduction benefits based on this. The results show that: 1) The carbon footprint of Bazizui navigation-power junction project is 109.82 × 104 t CO2eq, and the carbon footprint of the construction and operation periods are 0.49 × 106 t CO2eq and 2.3 × 106 t CO2eq respectively. 2) The total electricity delivered by the project is 128.4 × 108 kWh in the 30-year op-eration period, and the total carbon reduction is 4.66 × 106 t CO2eq. The research results have certain guidance and reference significance for accurate accounting of carbon emissions and en-vironmental benefits of Navigation-power junction project. It has a certain theoretical and practical guiding significance for Jiangxi to explore the path of realizing dual carbon goal.
[1] | 习近平. 在第七十五届联合国大会一般性辩论上的讲话[N]. 人民日报, 2020-09-23(2). |
[2] | 习近平. 继往开来, 开启全球应对气候变化新征程——在气候雄心峰会上的讲话[N]. 人民日报, 2020-12-13(1). |
[3] | 陈怡, 田川, 曹颖, 等. 中国电力行业碳排放达峰及减排潜力分析[J]. 气候变化研究进展, 2020, 16(5): 632-640. |
[4] | 黄伟杰, 谢丽芳, 李军, 等. 多目标航电枢纽项目投资分摊方法研究[J]. 水运工程, 2006(2): 65-69+85. |
[5] | 谢丽芳, 罗德芳, 李军. 内河航电枢纽工程航运经济效益的量化计算探讨[J]. 水运工程, 2009, 424(2): 113-118. |
[6] | Harvey, J.T., Meijer, J., Ozer, H., et al. (2016) Pavement Life-Cycle Assessment Framework; No. FHWA-HIF-16-014. U.S. Department of Transportation, Washington DC. |
[7] | Zhang, S., Pang, B. and Zhang, Z. (2015) Carbon Footprint Analysis of Two Different Types of Hydropower Schemes: comparing Earth-Rockfill Dams and Concrete Gravity Dams Using Hybrid Life Cycle Assessment. Journal of Cleaner Production, 103, 854-862. https://doi.org/10.1016/j.jclepro.2014.06.053 |
[8] | 杜海龙, 李哲, 郭劲松. 基于ISO14067的长江上游某水电项目碳足迹分析[J]. 长江流域资源与环境, 2017, 26(7): 1102-1110. |
[9] | Zhang, Q., Karney, B., MacLean, H.L., et al. (2007) Life-Cycle Inventory of Energy Use and Greenhouse Gas Emissions for Two Hydropower Projects in China. Journal of Infrastructure Systems, 13, 271-279.
https://doi.org/10.1061/(ASCE)1076-0342(2007)13:4(271) |
[10] | Hanne, L., Luc, G., Ingunn, S., et al. (2011) Life Cycle Greenhouse Gas (GHG) Emissions from the Generation of Wind and Hydro Power. Renewable and Sustainable Energy Reviews, 15, 3417-3422.
https://doi.org/10.1016/j.rser.2011.05.001 |
[11] | Pang, M.Y., Zhang, L.X., Wang, C.B., et al. (2015) Environmental Life Cycle Assessment of a Small Hydropower Plant in China. The International Journal of Life Cycle Assessment, 20, 796-806.
https://doi.org/10.1007/s11367-015-0878-7 |
[12] | 张社荣, 庞博慧, 张宗亮. 超高心墙堆石坝工程的碳足迹分析[J]. 安全与环境学报, 2016, 16(1): 283-287. |
[13] | Li, Z., Du, H., Xiao, Y., et al. (2017) Carbon Footprints of Two Large Hydro-Projects in China: Life-Cycle Assessment According to ISO/TS 14067. Renewable Energy, 114, 534-546. https://doi.org/10.1016/j.renene.2017.07.073 |
[14] | Wang, J.Y., et al. (2019) Assessing the Water and Carbon Footprint of Hydropower Stations at a National Scale. Science of the Total Environment, 676, 595-612. https://doi.org/10.1016/j.scitotenv.2019.04.148 |
[15] | Suwanit, W. and Gheewala, S.H. (2011) Life Cycle Assess-ment of Mini-Hydropower Plants in Thailand. International Journal of Life Cycle Assessment, 16, 849-858. https://doi.org/10.1007/s11367-011-0311-9 |
[16] | Zhang, J. and Xu, L. (2015) Embodied Carbon Budget Ac-counting System for Calculating Carbon Footprint of Large Hydropower Project. Journal of Cleaner Production, 96, 444-451. https://doi.org/10.1016/j.jclepro.2013.10.060 |
[17] | Pascale, A., Urmee, T. and Moore, A. (2011) Life Cycle Assessment of a Community Hydroelectric Power System in Rural Thailand. Renewable Energy, 36, 2799-2808. https://doi.org/10.1016/j.renene.2011.04.023 |
[18] | Li, H., Luo, Z., Xu, X., et al. (2021) Assessing the Embodied Carbon Reduction Potential of Straw Bale Rural Houses by Hybrid Life Cycle Assessment: A Four-Case Study. Journal of Cleaner Production, 303, Article ID: 127002.
https://doi.org/10.1016/j.jclepro.2021.127002 |
[19] | 李小冬, 王帅, 孔祥勤, 等. 预拌混凝土生命周期环境影响评价[J]. 土木工程学报, 2011, 44(1): 132-138. |
[20] | 杜海龙. 金沙江大型水电站碳足迹的生命周期分析研究[D]: [硕士学位论文]. 重庆: 中国科学院大学(中国科学院重庆绿色智能技术研究院), 2017. |
[21] | 夏欣, 钟权. 水电站生命周期温室气体排放研究综述[J]. 中国农村水利水电, 2020(11): 188-192. |
[22] | Bakken, T.H., Modahl, I.S., Engeland, K., et al. (2016) The Life-Cycle Water Footprint of Two Hydropower Projects in Norway. Journal of Cleaner Production, 113, 241-250. https://doi.org/10.1016/j.jclepro.2015.12.036 |
[23] | Levasseur, A., Mercier-Blais, S., Prairie, Y.T., et al. (2021) Improving the Accuracy of Electricity Carbon Footprint: Estimation of Hydroelectric Reservoir Greenhouse Gas Emissions. Renewable and Sustainable Energy Reviews, 136, Article ID: 110433. https://doi.org/10.1016/j.rser.2020.110433 |
[24] | 袁俊森, 潘纯. 水利工程经济[M]. 北京: 中国水利水电出版社, 2005. |
[25] | 赵小杰, 赵同谦, 郑华, 等. 水库温室气体排放及其影响因素[J]. 环境科学, 2008, 29(8): 2377-2384. |
[26] | 程炳红, 郝庆菊, 江长胜. 水库温室气体排放及其影响因素研究进展[J]. 湿地科学, 2012, 10(1): 121-128. |
[27] | 张全斌, 周琼芳. “双碳”目标下中国能源CO2减排路径研究[J]. 中国国土资源经济, 2022, 35(4): 22-30. |
[28] | 刘书玲. 中国省域二氧化碳减排目标与成本分担策略研究[D]: [硕士学位论文]. 徐州: 中国矿业大学, 2019. |