|
水生植物营造的植物微系统对富营养化水体抑藻能力的影响
|
Abstract:
本实验采用盆栽实验,研究了水生植物营造的植物微系统对富营养化水体抑藻能力的影响,结果表明:不同种类挺水植物处理后可降低富营养化水体的pH值,其中以千屈菜和鸢尾处理组的pH最低,分别为7.34和7.48,显著低于对照(CK)。同时,不同处理均有效降低了水体中氮磷含量。在实验结束时,鸢尾的总氮含量由9.49 mg/L下降到3.21 mg/L,去除率达66.2%;种植不同种类水生植物的水体TP去除率在59.1%?81.3%,明显高于无植物的对照组(去除率为37.6%)。鸢尾对水体TP的去除效果优于其余挺水植物,且与CK达到显著差异,去除率超过了80%。种植鸢尾的实验组在实验结束时chl a的含量最低(6.6 mg/L),较初始降低了37.1%,较CK低了54.1%,且与其他各处理达到显著差异(P < 0.05)。对照组测得叶绿素a浓度随着时间一直呈现缓慢上升。综合分析,不同挺水植物形成的微系统能有效改善水质条件,抑制水体中藻类的繁殖,其中以种植鸢尾的效果最佳。
In this experiment, a pot experiment was used to study the effect of the plant microsystem created by aquatic plants on the algae inhibition ability of eutrophic water. The pH values of the groups treated with phyllodendron and Iris were the lowest, 7.34 and 7.48, respectively, which were sig-nificantly lower than those of the control (CK). At the same time, different treatments all reduced the content of nitrogen and phosphorus in the water. At the end of the experiment, the total nitro-gen content of Iris dropped from 9.49 mg/L to 3.21 mg/L, and the removal rate reached 66.2%; the TP removal rate of water bodies planted with different types of aquatic plants was 59.1%?81.3%, which was significantly higher than that without plants the control group (removal rate 37.6%). The removal effect of iris on TP in water body is better than that of other emergent plants, and it is significantly different from CK, with a removal rate of more than 80%. The experimental group planted with iris had the lowest chl a content (6.6 mg/L) at the end of the experiment, which was 37.1% lower than the initial level and 54.1% lower than CK, and it was significantly different from other treatments (P < 0.05). The concentration of chlorophyll a in the control group has been showing a slow increase with time. According to the comprehensive analysis, the microsystems formed by different emergent plants can improve the water quality and inhibit the reproduction of algae in the water body, among which the effect of planting iris is the best.
[1] | 李祚泳, 丁晶. 环境质量评价原理与方法[M]. 北京: 化学工业出版社, 2004. |
[2] | 刘录三, 黄国鲜, 王璠, 等. 长江流域水生态环境安全主要问题、形势与对策[J]. 环境科学研究, 2020, 33(5): 1081-1090. |
[3] | 陈双, 王国祥, 许晓光, 等. 水生植物类型及生物量对污水处理厂尾水净化效果的影响[J]. 环境工程学报, 2018, 12(5): 1424-1433. |
[4] | 洪瑜, 王英, 王芳, 等. 不同水生植物组合对稻田退水的氮磷净化效果[J]. 环境科学与技术, 2020, 43(3): 110-115. |
[5] | Wang, C., Zheng, S.S., Wang, P.F., et al. (2014) Effects of Vegetations on the Removal of Contaminants in Aquatic Environments: A Review. Journal of Hydrodynamics, Serice B, 26, 497-511.
https://doi.org/10.1016/S1001-6058(14)60057-3 |
[6] | Kadlec, R., Knight, R., Vymazal, J., et al. (2002) Constructed Wetlands for Pollution Control. IWA Publishing, London, 93-102. |
[7] | 彭少麟. 南亚热带退化生态系统恢复和重建的生态学理论和应用[J]. 热带亚热带植物学报, 1996, 4(3): 36-44. |
[8] | 林娟, 殷全玉, 杨丙钊, 等. 植物化感作用研究进展[J]. 中国农学通报, 2007, 23(1): 68-72. |
[9] | 濮培民, 王国祥, 李正魁, 等. 健康水生态系统的退化及其修复理论、技术及应用[J]. 湖泊科学, 2001, 13(3): 193-203. |
[10] | 蔡玲, 张浩, 陈宇. 挺水植物与浮叶植物在苏北湿地景观中的应用[J]. 基因组学与应用生物学, 2019, 38(11): 5131-5135. |
[11] | 樊恒亮, 谢丽强, 宋晓梅, 等. 沉水植物对水体营养的响应及氮磷积累特征[J]. 环境科学与技术, 2017, 40(3): 42-48. |
[12] | Zhang, C.B., Liu, W.L., Pan, X.C., et al. (2014) Comparison of Effects of Plant and Biofilm Bacterial Community Parameters on Removal Performances of Pollutants in Floating Island Systems. Ecological Engineering, 73, 58-63.
https://doi.org/10.1016/j.ecoleng.2014.09.023 |
[13] | 张海燕, 唐迎洲, 顾建英. 水生态系统净水效果研究进展评述[J]. 环境科学与技术, 2016, 39(1): 79-86. |