全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Eckhaus-Kundu方程的孤波解、周期波解及它们间的演化关系
Solitary and Periodic Wave Solutions of the Eckhaus-Kundu Equation and Their Evolutionary Relations

DOI: 10.12677/AAM.2022.1112948, PP. 8988-9003

Keywords: Eckhaus-Kundu方程,孤立波解,周期波解,Hamilton能量,基于首次积分的分析法
Eckhaus-Kundu Equation
, Solitary Wave Solution, Periodic Wave Solution, Hamilton Energy, Analytical Method Based on First Integral

Full-Text   Cite this paper   Add to My Lib

Abstract:

该文结合定性分析方法和基于首次积分的分析法,探讨了Eckhaus-Kundu方程的孤波解、周期波解,以及上述二种解关于Hamilton系统能量的演化。本文求出了所研方程全部的钟状和扭状孤波解,并提出了新孤波解以及三类周期波解。通过本文的论述,发现了所研方程为什么能产生孤波解和周期波解,实质上是该方程解的振幅对应的Hamilton系统的能量变化起着关键的作用。
In the paper, the solitary and periodic wave solutions of the Eckhaus-Kundu equation and their evolutionary relation with Hamilton energy are studied via combining qualitative analysis with an-alytical method on the basis of first integral. All bell-shaped and kink-shaped solitary wave solu-tions of the equation are obtained, and the new solitary wave solutions and three kinds of periodic wave solutions are given. The discussion reveals that the energy of Hamilton system, which takes different values, is the crucial factor for the emergence of solitary and periodic wave solutions to the studied equation, and the Hamilton system is corresponded by the amplitudes of these solutions.

References

[1]  Kundu, A. (1984) Lanau-Lifshitz and Higher-Order Nonlinear Systems Gauge Generated from Nonlinear Schr?dinger Type Equations. Journal of Mathematical Physics, 25, 3433-3438.
https://doi.org/10.1063/1.526113
[2]  Calogero, F. and Eckhaus, W. (1988) Nonlinear Evolution Equations, Rescalings, Model PDES and Their Integrability: I. Inverse Problems, 3, 229-262.
https://doi.org/10.1088/0266-5611/3/2/008
[3]  Clarkson, P.A. and Tuszynski, J.A. (1990) Exact Solutions of the Multidimensional Derivative Nonlinear Schr?dinger Equation for Many-Body Systems of Critical-ity. Journal of Physics A: Mathematical and General, 23, 4269-4288.
https://doi.org/10.1088/0305-4470/23/19/013
[4]  Johnson, R.S. (1977) On the Modulation of Water Waves in the Neighbourhood of kh≈1.363. Proceedings of the Royal Society A: Mathematical and Physical Sciences, 357, 131-141.
https://doi.org/10.1098/rspa.1977.0159
[5]  Kodama, Y. (1985) Optical Solitons in a Monomode ?ber. Journal of Statistical Physics, 39, 597-614.
https://doi.org/10.1007/BF01008354
[6]  Clarkson, P.A. and Cosgrove, C.M. (1987) Painlevé Analysis of the Non-Linear Schr?dinger Family of Equations. Journal of Physics A: Mathematical and General, 20, 2003-2024.
https://doi.org/10.1088/0305-4470/20/8/020
[7]  Mendoze, J., Muriel, C. and Ramírez, J. (2020) New Optical Sol-itons of Kundu-Eckhaus Equation via λ-Symmetry. Chaos, Solitons & Fractals, 136, Article ID: 109786.
https://doi.org/10.1016/j.chaos.2020.109786
[8]  Wang, P., Tian, B., Sun, K. and Qi, F.H. (2015) Bright and Dark Soliton Solutions and B?cklund Transformation for the Eckhaus-Kundu Equation with the Cubic-Quintic Nonlinearity. Applied Mathematics and Computation, 251, 233-242.
https://doi.org/10.1016/j.amc.2014.11.014
[9]  Xie, X.Y., Tian, B., Sun, W.R. and Sun, Y. (2015) Rogue-Wave Solutions for the Kundu-Eckhaus Equation with Variable Coeffi-cients in an Optical Fiber. Nonlinear Dynamics, 81, 1349-1354.
https://doi.org/10.1007/s11071-015-2073-6
[10]  Zha, Q.L. (2013) On Nth-Order Rogue Wave Solution to the Generalized Nonlinear Schr?dinger Equation. Physics Letters A, 377, 855-859.
https://doi.org/10.1016/j.physleta.2013.01.044
[11]  Tian, S.F., Tu, J.M., Zhang, T.T. and Chen, Y.R. (2021) Inte-grable Discretizations and Soliton Solutions of an Eckhaus-Kundu Equation. Applied Mathematics Letters, 122, Article ID: 107507.
https://doi.org/10.1016/j.aml.2021.107507
[12]  Cimpoiasu, R. and Constantinescu, R. (2021) Invariant Solutions of the Eckhaus-Kundu Model with Nonlinear Dispersionand Non-Kerr Nonlinearities. Waves in Random and Complex Me-dia, 32, 331-341.
https://doi.org/10.1080/17455030.2019.1587210
[13]  Luo, J. and Fan, E. (2021) A -Dressing Approach to the Kundu-Eckhaus Equation. Journal of Geometry and Physics, 167, Article ID: 104291.
https://doi.org/10.1016/j.geomphys.2021.104291
[14]  Zhang, W.G., Chang, Q.S. and Fan, E.G. (2003) Methods of Judging Shape of Solitary Wave and Solution Formulae for Some Evolution Equations with Nonlinear Terms of High Order. Journal of Mathematical Analysis and Applications, 287, 1-18.
https://doi.org/10.1016/S0022-247X(02)00336-0
[15]  Zhang, W.G., Chang, Q.S. and Jiang, B.G. (2002) Explicit Exact Solitary-Wave Solutions for Compound KdV-Type and Compound KdV-Burgers-Type Equations with Nonlinear Terms of Any Order. Chaos, Solitons & Fractals, 13, 311-319.
https://doi.org/10.1016/S0960-0779(00)00272-1
[16]  Byrd, P.F. and Friedman, M.D. (1971) Handbook of Elliptic Integrals for Engineers and Scientists. In: Chenciner, A. and Varadhan, S.R.S., Eds., Grundlehren der mathematischen Wissenschaften, Vol. 67, Springer-Verlag, New York.
https://doi.org/10.1007/978-3-642-65138-0
[17]  Lawden, D.F. (1989) Elliptic Functions and Applications. In: Bloch, A., Epstein, C.L., Goriely, A. and Greengard, L., Eds., Applied Mathematical Sciences, Vol. 80, Springer-Verlag, New York.
https://doi.org/10.1007/978-1-4757-3980-0

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133