全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有Logistic增长的蚊群动力学模型的稳定性分析
Stability Analysis of Mosquito Population Dynamics Model with Logistic Growth

DOI: 10.12677/AAM.2022.1112939, PP. 8908-8916

Keywords: 蚊媒传染病,蚊群动力学模型,单调动力系统理论
Mosquito-Borne Infectious Diseases
, Mosquito Population Dynamic Model, Monotone Dynamic Sys-tem Theory

Full-Text   Cite this paper   Add to My Lib

Abstract:

疟疾、登革热等蚊媒传染病的高致病率和高死亡率给全球公共卫生带来了巨大的挑战。本文建立了一个具有Logistic增长的蚊群传播动力学模型,通过计算系统的基本再生数,得到了系统平衡点的存在性,并结合单调动力系统理论,得到了系统平凡平衡点和正平衡点的全局渐近稳定性。
The high morbidity and mortality rates of mosquito-borne infectious diseases such as malaria and dengue pose a huge challenge to global public health. In this paper, a transmission dynamic model of mosquito population with Logistic growth is established. The existence of the equilibrium points is obtained by calculating the basic regeneration number of the system, and the global asymptotic stability of the trivial equilibrium point and the positive equilibrium point is obtained by combin-ing the theory of monotone dynamic system.

References

[1]  Ross, R. (1911) The Prevention of Malaria. 2nd Edition, John Murray, London.
[2]  Macdonald, G. (1957) The Epi-demiology and Control of Malaria. Oxford University Press, Oxford.
[3]  Strugarek, M., Bossin, H. and Dumont, Y. (2019) On the Use of the Sterile Insect Release Technique to Reduce or Eliminate Mosquito Populations. Applied Math-ematical Modelling, 68, 443-470.
https://doi.org/10.1016/j.apm.2018.11.026
[4]  Thomé, R.C.A., Yang, H.M. and Esteva, L. (2010) Optimal Con-trol of Aedes aegypti Mosquitoes by the Sterile Insect Technique and Insecticide. Mathematical Biosciences, 223, 12-23.
https://doi.org/10.1016/j.mbs.2009.08.009
[5]  Anguelov, R., Dumont, Y. and Lubuma, J. (2012) Mathematical Modeling of Sterile Insect Technology for Control of Anopheles Mosquito. Computers and Mathematics with Applica-tions, 64, 374-389.
https://doi.org/10.1016/j.camwa.2012.02.068
[6]  Tapi, D., Beihle, B., Bowong, S. and Dumont, Y. (2018) Mod-els for Miridae, a Cocoa Insect Pest. Application in Control Strategies. Mathematical Methods in the Applied Sciences, 41, 8673-8696.
https://doi.org/10.1002/mma.5063
[7]  Haramboure, M., Labbé, P., Baldet, T., et al. (2020) Mod-elling the Control of Aedes albopictus Mosquitoes Based on Sterile Males Release Techniques in a Tropical Environment. Ecological Modelling, 424, Article ID: 109002.
https://doi.org/10.1016/j.ecolmodel.2020.109002
[8]  Dumont, Y. and Yatat-Djeumen, I. (2022) Sterile Insect Technique with Accidental Releases of Sterile Females. Impact on Mosquito-Borne Diseases Control When Viruses Are Circulating. Mathematical Biosciences, 343, Article ID: 108724.
https://doi.org/10.1016/j.mbs.2021.108724
[9]  Moulay, D., Aziz-Alaoui, M. and Cadivel, M. (2011) The Chikungunya Disease: Modeling, Vector and Transmission Global Dynamics. Mathematical Biosciences, 229, 50-63.
https://doi.org/10.1016/j.mbs.2010.10.008
[10]  Danbaba, U. and Garba, S. (2018) Modeling the Transmission Dynamics of Zika with Sterileinsect Technique. In: Anguelov, R. and Lachowicz, M., Eds., Mathematical Methods and Models in Biosciences, Biomath Forum, Sofia, 81-99.
https://doi.org/10.11145/texts.2018.01.083
[11]  Almeida, L., Duprez, M., Privat, Y. and Vauchelet, N. (2022) Op-timal Control Strategies for the Sterile Mosquitoes Technique. Journal of Differential Equations, 311, 229-266.
https://doi.org/10.1016/j.jde.2021.12.002
[12]  Bakhtiar, T., Fitri, I., Hanum, F and Kusnanto, A. (2022) Mathemat-ical Model of Pest Control Using Different Release Rates of Sterile Insects and Natural Enemies. Mathematics, 10, Arti-cle No. 883.
https://doi.org/10.3390/math10060883
[13]  Xue, L., Fang, X. and Hyman, J. (2018) Comparing the Effectiveness of Different Strains of Wolbachia for Controlling Chikungunya, Dengue Fever, and Zika. PLOS Neglected Tropical Diseases, 12, e0006666.
https://doi.org/10.1371/journal.pntd.0006666
[14]  庞轶友. 不育蚊子动力学模型研究[D]: [硕士学位论文]. 吉林: 长春理工大学, 2022.
[15]  罗育东, 张国洪. 具有强Allee效应的野生蚊子和绝育蚊子相互作用模型[J]. 西南大学学报(自然科学版), 2019, 41(1): 65-71.
[16]  武丹. 一类Wolbachia氏菌在蚊群传播的数学模型的动力学研究[D]: [硕士学位论文]. 广州: 广州大学, 2022.
[17]  陈盼盼, 钟浩南, 王稳地. 基于工程菌控制蚊子的动力学建模与分析[J]. 西南师范大学学报(自然科学版), 2021, 46(5): 25-31.
[18]  张金金, 王稳地, 舒梦诗, 姚苗然. 沃尔巴克氏体在蚊子种群中的传播动态分析[J]. 西南大学学报(自然科学版), 2017, 39(3): 81-87.
[19]  吕贵臣, 陆征一. 高维系统稳定性的几何判据[M]. 北京: 科学出版社, 2019.
[20]  马知恩, 周义仓, 李承治. 常微分方程定性与稳定性方法[M]. 北京: 科学出版社, 2015.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133