|
Lidar点云三维模型于Morse理论下特征提取及应用
|
Abstract:
针对传统的特征提取技术特征提取粗略,拓扑信息大量丢失,拓扑关系难以简化等问题,本文实现了基于分段线性Morse理论的特征提取算法,确定了一种新特征线度量指标。首先以三角网格顶点曲率计算为基础,构建了三维表面模型的Morse理论指标函数;采用最大(小)邻点算法连接指标函数所提取特征点,完成特征线构建;针对Morse-Smale复形在三维表面模型中冗余或错误特征过多,采用单复形拓扑模型进行特征提取;以三维表面模型Morse单复形“持续值法”思想为参照,确定了一种点线结合特征线提取度量指标,并基于该指标完成特征线额拓扑简化。实验结果表明,对棱角线完整性和存在性存在关键作用,在零件模型点云压缩率为26.02%,在苹果模型点云压缩率为39.33%,提高了拓扑特征提取效率,为点云后续处理奠定良好基础。
In response to the problems of rough feature extraction, massive loss of topological information, and difficulty in simplifying topological relationships by traditional feature extraction techniques, this study implements a feature extraction algorithm based on segmented linear Morse theory and de-termines a new feature line metric. The Morse index function of the 3D surface model is constructed based on the calculation of the triangular mesh vertex curvature; the maximum (small) neighbor-hood algorithm is used to connect the extracted feature points of the index function to complete the construction of the feature line; in view of the excessive redundant or wrong features of the Morse-Smale complex in the 3D surface model, the single complex topological model is used for feature extraction; the 3D surface model is used as the “Morse single complex” continuous model. The Morse single complex shape “continuous value method” is used as a reference, and a point-line combination feature line extraction metric is determined. And based on this index, the topological simplification of the characteristic line is completed. The experimental results show that it has a key effect on the integrity and existence of angular lines, and the compression rate of the point cloud is 26.02% in the part model and 39.33% in the apple model, which improves the efficiency of topological feature extraction and lays a good foundation for the subsequent processing of the point cloud.
[1] | 李红梅, 张春亢, 张霞, 等. Morse理论支持下的建筑物点云特征提取[J]. 测绘通报, 2020(5): 31-35+42. |
[2] | 姚明镜, 唐璇, 张春良, 等. 基于逆向工程和FDM技术的塑料产品设计与应用[J]. 塑料科技, 2020, 48(12): 45-48. |
[3] | 龙丽娟, 夏永华, 黄德. 一种基于三维激光扫描点云数据的变电站快速建模方法[J]. 激光与光电子学进展, 2020, 57(20): 202801. |
[4] | 骆社周, 习晓环, 王成. 激光雷达遥感在文化遗产保护中的应用[J]. 遥感技术与应用, 2014, 29(6): 1054-1059. |
[5] | 魏明强, 陈红华, 孙杨杏, 等. 破损文物数字化修复: 以中国出土青铜器为例[J]. 计算机辅助设计与图形学学报, 2021, 33(5): 789-797. |
[6] | Ghahremani, M., Williams, K., Corke, F., et al. (2021) Direct and Accurate Feature Extraction from 3D Point Clouds of Plants Using RANSAC. Computers and Elec-tronics in Agriculture, 187, Article ID: 106240.
https://doi.org/10.1016/j.compag.2021.106240 |
[7] | 沈定涛, 钱天陆, 夏煜, 等. 机载LiDAR数据提取堤防工程特征信息圆环探测法[J]. 测绘学报, 2021, 50(2): 203-214. |
[8] | Fu, S.Y. and Wu, L.S. (2019) Feature Line Extrac-tion from Point Clouds Based on Geometric Structure of Point Space. 3D Research, 10, 16. https://doi.org/10.1007/s13319-019-0227-x |
[9] | 邓博文, 王召巴, 金永, 等. 基于形态学梯度的激光扫描点云特征提取方法[J]. 激光与光电子学进展, 2018, 55(5): 239-245. |
[10] | 郭峰, 毛政元, 邹为彬, 等. 融合LiDAR数据与高分影像特征信息的建筑物提取方法[J]. 地球信息科学学报, 2020, 22(8): 1654-1665. |
[11] | 张春亢, 李红梅, 张霞. 非对偶性点云拓扑特征识别与过渡特征保护[J]. 光学精密工程, 2020, 28(10): 2301-2310. |
[12] | 邱彦杰, 周雄辉. 反向工程中三角网格的加工特征识别[J]. 计算机辅助设计与图形学学报, 2010, 22(4): 711-716. |
[13] | Sahner, J., Weber, B., Prohaska, S., et al. (2008) Extraction of Feature Lines on Surface Meshes Based on Discrete Morse Theory. Computer Graphics Forum, 27, 735-742. https://doi.org/10.1111/j.1467-8659.2008.01202.x |
[14] | Milnor, J. (1963) Morse Theory. Princeton University Press, Princeton, 1-37. |
[15] | 刘俊, 刘希玉. 基于广义离散Morse理论的强关联规则挖掘[J]. 计算机工程, 2011, 37(16): 45-47. |
[16] | 袁洁, 周明全, 耿国华, 等. 基于Morse-Smale拓扑特征的文物碎片拼接算法[J]. 自动化学报, 2018, 44(8): 1486-1495. |
[17] | 刘梦婷, 方美娥, 张楠, 等. 连续框架下二维标量场Morse-Smale复形分割[J]. 计算机辅助设计与图形学学报, 2016, 28(12): 2075-2081. |